Hepato- and hemato-protective properties of α-ketoglutarate under the combined effect of water-immobilization and emotional stress

Keywords: aminotranspherases; catalase; superoxidedismutase; TBA-active products, liver, blood

Abstract

This article presents the results of the combined effect of water-immobilization and emotional stress on haematological and morphological parameters of blood and liver status of rats in conditions of correction of the disorders using by α-ketoglutarate. Experimental combined stress was induced by the interchangeable effect of dry immobilization and immersion in water for 3 days under constant illumination using an artificial lighting lamp of 1,000 lux., thus achieving a combined effect of stress. Physiological adaptation and administration of 0.8 g/kg of body weight of α-ketoglutarate lasted 14 days after stress induction. Haematological parameters were determined using the Automated Veterinary Hematology Analyzer PCE 90 Vet (High Technology Inc., USA), while biochemical parameters of the liver state were determined by spectrophotometric and colourimetric methods. The obtained results showed an increase in hemolysis, which was determined by a decrease in the number of erythrocytes and haemoglobin concentration in the blood of rats under the effect of the stress factors studied. A negative consequence of strengthening of hemolysis is the development of hypoxia in the liver, which causes the slowing of metabolic processes in its cells. As a result, there is an accumulation of partially oxidized products: lactate and pyruvate, increased formation of TBA-active products, and oxidative modification of proteins. During the 14 days of physiological adaptation after stress, the main indicators of blood and liver status of the rats were partially restored. A stronger recovery of redox status and improvement of the physiological state of the liver and, hence, haematological parameters, were noted for rats that received α-ketoglutarate for 14 days after stress. The revealed general positive trend indicates the stimulation of adaptation processes and the overall functioning of the antioxidant system of the liver of rats in the use of α-ketoglutarate against the background of the combined effects of water-immobilization and emotional stress.

References

Andrae, U., Singh, J., & Ziegler-Skylakakis, K. (1985). Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicology Letters, 28, 93–98.


Andreeva, L. Y., Kozhemjakyn, L. A., & Kyshkun, A. A. (1988). Modification of the method for the determination of lipid peroxides in the test with thiobarbituric acid. Laboratornoe Delo, 2, 41–43.


Banerjee, K., Munshi, S., Xu, H., Frank, D. E., Chen, H-L., Chu, C. T., Yang, J., Cho, S., Kagan, V. E., Denton, T. T., Tyurina, Y. Y., Jiang, J. F., & Gibson, G. E. (2016). Mild mitochondrial metabolic deficits by α-ketoglutarate dehydrogenase inhibition cause prominent changes in intracellular autophagic signaling: Potential role in the pathobiology of Alzheimer’s disease. Neurochemistry International, 96, 32–45.


Baulies, A., Montero, J., Matías, N., Insausti, N., Terrones, O., Basañez, G., Vallejo, C., Conde de La Rosa, L., Martinez, L., Robles, D., Morales, A., Abian, J., Carrascal, M., Machida, K., Kumar, D. B. U., Tsukamoto, H., Kaplowitz, N., Garcia-Ruiz, C., & Fernández-Checa, J. C. (2018). The 2-oxoglutarate carrier promotes liver cancer by sustaining mitochondrial GSH despite cholesterol loading. Redox Biology, 14, 164–177.


Burtis, C., Аshvud, E., & Bruns, D. (2012). Text book of clinical chemistry and molecular diagnostics. WB Saunders, Philadelphia.


Dakshayani, K. B., Subramanian, P., Manivasagam, T., & Essa, M. M. (2006). Metabolic normalization of alpha-ketoglutarate against N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. Fundamental and Clinical Pharmacology, 20, 477–480.


Desagher, S., Glowinski, J., & Prémont, J. (1997). Pyruvate protects neurons against hydrogen peroxide-induced toxicity. Journal of Neuroscience, 17, 9060–9067.


Dyomshina, O. O., Ushakova, G. O., & Stepchenko, L. M. (2017). The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils. Regulatory Mechanisms in Biosystems, 8(2), 185–190.


Evans, G. O. (1994). Removal of blood from laboratory mammals and birds. Laboratory Animals, 28(2), 178–179.


Frigerio, D., Ludwig, S. C., Hemetsberger, J., Kotrschal, K., & Wascher, C. A. F. (2017). Social and environmental factors modulate leucocyte profiles in free-living Greylag geese (Anser anser). PeerJ, 5, e2792.


Grabovskyi, S. S. (2014). Effect of natural immunomodulators influence on cellular immunity indices and cortisol level in rat’s blood at pre-slaughter stress. Studia Biologica, 8(1), 93–102.


Harrison, A. P., & Pierzynowski, S. G. (2008). Biological effects of 2-oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the hart-review article. Journal of Physiology and Pharmacology, 59(1), 91–106.


Hlinic, S. V., Romanovsky, I. V., Rineyskaya, O. N., Kartun, L. V., & Khodosovskaya, E. V. (2007). Hormonal status and the state of the lipid peroxidation system in the brain tissue of rats under cold stress on the background of experimental hypothyroidism. Proceedings of the National Academy of Sciences of Belarus, Series of Medical Sciences, 2, 55–59.


Khariv, I. I. (2013). Vplyv "Amprolinsylu" ta brovitakoktsydu na pokaznyky klitynnoho i humoralʹnoho imunitetu indykiv za eymeriozo-histomonoznoyi invaziyi [Influence of amprolissil and broth tacticide on indicators of cell and humoral immunity of turkey cocks under the emeritus-histomonous invasion]. Biolohiya Tvaryn, 15(4), 159–165.


Khariv, M., Gutyj, B., Butsyak, V., & Khariv, I. (2016). Hematolohichni pokaznyky orhanizmiv shchuriv v umovakh okyslyuvalʹnoho stresu ta diyi liposomalʹnoho preparatu [Hematological indices of rat organisms under conditions of oxidative stress and liposomal preparation action]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(1), 276–289.


Khnychenko, L. K., & Sapronov, N. S. (2003). Stress and its role in the development of pathological processes. Reviews on Clinical Pharmacology and Drug Therapy, 2(3), 2–15.


Kocharniy, V. V., Rutgaizer, V. G., Abdul-Ogly, L. V., Mаgro, V. I., & Kumchenko, V. V. (2017). Zminy pokaznykiv krovi u shchuriv pislya vplyvu elektromahnitnoho vyprominyuvannya [Change of the blood indexes rats following the influence of the electromagnetic radiation]. Journal of Clinical and Experimental Pathology, 16(2), 28–32.


Koroliuk, M. A., Ivanova, L. I., Mayorova, I. G., & Tokarev, V. E. (1988). A method of determining catalase activity. Laboratornoe Delo, 1, 16–19.


Kostjuk, V. A., Potapovych, A. Y., & Kovaleva, Z. V. (1990). A simple and sensitive method for determining the activity of superoxidedismutase, based on the oxidation reaction of quercetin. Questions of Medical Chemistry, 36(2), 88–91.


Kovalenko, T. N., Ushakova, G. A., Osadchenko, I., Skibo, G. G., & Pierzynowski, S. G. (2011). The neuroprotective effect of 2-oxoglutarate in the experimenttal ischemia of hippocampus. Journal of Physiology and Pharmacology, 62(2), 239–246.


Krebs, H. A., & Johnson, W. A. (1980). The role of citric acid in intermediate metabolism in animal tissues. FEBS Letters, 117(Suppl.), K1–10.


Long, L. H., & Halliwell, B. (2011). Artefacts in cell culture: α-ketoglutarate can scavenge hydrogen peroxide generated by ascorbate and epigallocatechin gallate in cell culture. Biochemical and Biophysical Research Communications, 406(1), 20–24.


Lushchak, V. I. (2015). Free radicals, reactive oxygen species, oxidative stresses and their classifications. The Ukrainian Biochemical Journal, 87(6), 11–18.


Lushchak, V. I., Semchyshyn, H. M., & Lushchak, O. V. (2011). The classic methods to measure oxidative damage: Lipid peroxides, thiobarbituric acid reactive substances, and protein carbonyls. Oxidative Stress in Aquatic Ecosystems, 32, 420–431.


Mehra, L., Hasija, Y., & Mittal, G. (2016). Therapeutic potential of alpha-ketoglutarate against acetaminophen-induced hepatotoxicity in rats. Journal of Pharmacy and Bioallied Sciences, 8(4), 296–299.


Mikhaylenko, E. A., Dyomshina, O. O., Ushakova, G. O., & Stepchenko, L. M. (2016). Efektivnіst' antyoksydantnoyi systemy pechіnky brojlerіv krosu Kobb-500 pry vypojuvannі pryrodnymy bіologіchno aktyvnymy dobavkamy na osnovі gumіnovyh rechovyn [The effectiveness of the antioxidant system of the liver of broilers of the Cobb-500 cross-breeder when dispensing with natural biologically active additives on the basis of humic substances]. Vіsnyk Derzhavnogo Agrarno-Ekonomіchnogo Unіversity, 42(4), 120–125.


Miller, E., Walczak, A., Saluk, J., Ponczek, M. B., & Majsterek I. (2012). Oxidative modification of patient's plasma proteins and its role in pathogenesis of multiple sclerosis. Clinical Biochemistry, 45(1–2), 26–30.


Morton, D. B., Abbot, D., Barclay, R., Close, B. C., Ewbank, R., Gask, D., Heath, M., Mattic, S., Poole, T., Seamer, J., Southee, J., Thompson, A., Trussell, B., West, G., & Jennings, M. (1993). Removal of blood from laboratory mammals and birds: First report of the BVA/FRAME/RSPCA/UFAW Joint Working Group on Refinement. Laboratory Animals, 27(1), 1–22.


Pasko, A. Y. (2016). Doslidzhennya rivnya produktiv okysnoyi modyfikatsiyi bilkiv ta antyoksydantnykh fermentiv u patsiyentiv z pislyaoperatsiynym hipoparatyreozom [Study of the level of products of oxidative modification of proteins and antioxidant enzymes in patients with postoperative hypoparathyroidism]. Bukovinian Medical Herald, 20(2),116–120.


Sahafi, E., Peeri, M., Hosseini, M. J., & Azarbyjani, M. A. (2018). Cardiac oxidative stress following maternal separation stress was mitigated following adolescent voluntary exercise in adult male rat. Physiology and Behavior, 183, 39–45.


Salyha, N. O. (2013). Funktsionuvannya antyoksydantnoyi systemy shchuriv na diyu L-hlutamynovoyi kysloty ta tsysteyinu na tli eksperymentalʹnoho stresu [Functioning of the antioxidant system of rats on the action of L-glutamic acid and cysteine against the background of experimental stress]. Zhurnal of V. N. Karazin Kharkiv National University, Series Biology, 1056, 21–25.


Sawa, K., Uematsu, T., Korenaga, Y., Hirasawa, R., Kikuchi, M., Murata, K., Zhang, J., Gai, X., Sakamoto, K., Koyama, T., & Satoh, T. (2017). Krebs cycle intermediates protective against oxidative stress by modulating the level of reactive oxygen species in neuronal HT22 cells. Antioxidants, 6(1), 21.


Semchyshyn, H. M., & Lushchak, V. I. (2012). Interplay between oxidative and carbonyl stresses: Molecular mechanisms, biological effects and therapeutic strategies of protection. In: Lushchak, V. I., & Semchyshyn, H. M. (Eds.). Oxidative stress Molecular mechanisms and biological effects. Pp. 15–46.


Serova, D., Taran, O., & Dyomshina, O. (2016). Biological activity of humic substances in the liver of Mongolian gerbils (Meriones unguiculatus). Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 410–415.


Shmarakov, I. O., Borschovetska, V. L., & Marchenko, M. N. (2014). Features generation of reactive oxygen and nitrogen acute hepatotoxicity. Visnyk of Dnipropetrovsk University, Biology, Ecology, 22(1), 3–7.


Sokołowska, M., Oleszek, A., & Włodek, L. (1999). Protective effect of alpha-keto acids on the oxidative hemolysis. Polish Journal of Pharmacology, 51, 429–434.


Sookoian, S., & Pirola, C. J. (2015). Liver enzymes, metabolomics and genome-wide association studies: From systems biology to the personalized medicine. World Journal of Gastroenterology, 21(3), 711–725.


Sterling, S. A., Puskarich, M. A., & Jones, A. E. (2015). The effect of liver disease on lactate normalization in severe sepsis and septic shock: A cohort study, Clinical and Experimental Emergency Medicine, 2(4), 197–202.


Svan, O. B. (2015). Vplyv hostroho stresu na funktsiyi donora zhovchi pechinky v umovakh kryokhirurhiyi shkiry v eksperymenti [Influence of acute stress on bile donor function of the liver under conditions of skin cryosurgery in the experiment]. Dosyahnennya Klinichnoyi ta Eksperymentalʹnoyi Medytsyny, 2–3, 135–137.


Tkachenko, V., Kovalchuk, Y., Bondarenko, N., Bondarenko, O., Ushakova, G., & Shevtsova, A. (2018). The cardio- and neuroprotective effects of corvitin and 2-oxoglutarate in rats with pituitrin-isoproterenol-induced myocardial damage. Biochemistry Research International, 2018, ID 9302414.


Usende, I. L., Olopade, J. O., Emikpe, B. O., Oyagbemi, A. A., & Adedapo, A. A. (2018). Oxidative stress changes observed in selected organs of African giant rats (Cricetomys gambianus) exposed to sodium metavanadate. International Journal of Veterinary Science and Medicine, 6(1), 80–89.


Ushakova, G., Fomenko, O., & Pierzynowski, S. (2010). Non-invasive markers of hepatic encephalopathy under chronic hepatitis C and 2-oxoglutarate treatment. Annales Universitatis Mariae Curie-Sklodowska, 23(3), 203–206.


Velvizhi, S., Dakshayani, K. B., & Subramanian, P. (2002). Effects of alpha-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetate. Nutrition, 18, 747–750.


Vincent, J. L., Quintairos, E. S. A., Couto, L., & Taccone, F. S. (2016). The value of blood lactate kinetics in critically ill patients: A systematic review, Critical Care, 20(1), 257.


Volkova, S. V., & Meleshkina, S. R. (2008). Stress of farm animals as a response to adverse environmental conditions. Modern Science-Intensive Technologies, 4, 55–56.


Warille, A. A., Altun, G., Elamin, A. A., Kaplan, A. A., Mohamed, H., Yurt, K. K., & El Elhaj, A. (2017). Skeptical approaches concerning the effect of exposure to electromagnetic fields on brain hormones and enzyme activities. Journal of Microscopy and Ultrastructure, 5, 177–184.


Weiner, H. (1996). Use of animal models in pepticulcer disease. Psychosomatic Medicine, 58(6), 524–545.


Wieckowski, M. R., Giorgi, C., Lebiedzinska, M., Duszynski, J., & Pinton, P. (2009). Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cells. Nature Protocols, 4(11), 1582–1590.


Wu, X., Zhang, L., Miao, Y., Yang, J., Wang, X., Wang, C. C., Feng, J., & Wang, L. (2018). Homocysteine causes vascular endothelial dysfunction by disrupting endoplasmic reticulum redox homeostasis. Redox Biology, 26, 46–59.


Yao, K., Yin, Y., Li, X., Xi, P., Wang, J., Lei, J., Hou, Y., & Wu, G. (2012). Alpha-ketoglutarate inhibits glutamine degradation and enhances protein synthesis in intestinal porcine epithelial cells. Amino Acids, 42(6), 2491–2500.


Young, D. S. (2014). Effects on clinical laboratory tests: Drugs, disease, herbs and natural products. American association for clinical chemistry, John Wiley & Sons, Inc.


Zakari, F. O., Ayo, J. O., Rekwot, P. I., & Kawu, M. U. (2014). Effect of age, sex, physical activity and meteorological factors on haematological parameters of donkeys (Equus asinus). Comparative Clinical Pathology, 25(6), 1265–1272.


Zdzisińska, B., Żurek, A., Kandefer-Szerszeń, M. (2016). Alpha-ketoglutarate as a molecule with pleiotropic activity: Well-known and novel possibilities of therapeutic use. Archivum Immunologiae et Therapiae Experimentalis, 65(1), 21–36.

Published
2018-11-27
How to Cite
Dyomshina, O. O., Koloda, M. I., & Ushakova, G. O. (2018). Hepato- and hemato-protective properties of α-ketoglutarate under the combined effect of water-immobilization and emotional stress. Regulatory Mechanisms in Biosystems, 9(4), 508-513. https://doi.org/10.15421/021876