Biochemical properties of the plasma of rats with the experimentally induced hepatitis after oral administration of sodium diclofenac

Keywords: liver, biochemical parameters, enzymes, macroelements

Abstract

We conducted an analysis of the metabolic activity of the liver and defined the peculiarities of biochemical parameters and macroelement composition of blood plasma of rats with experimentally induced toxic hepatitis. Hepatopathology was modeled by oral administration of sodium diclofenac at a dose of 12.5 mg/kg of body mass to rats during 14 days. For the preparation of plasma, rat blood was collected from the abdominal aorta into test-tubes with heparin, and then it was centrifuged at 1500 rev./min for 15–20 min. Then we studied biochemical parameters of blood indicators (level of total protein, albumin, total and conjugated bilirubin, glucose, creatinine, urea, triacylglycerols, cholesterol, thymol test value, activities of ALT, AST, LP and GGT, amylase and lipase) and also its macroelement composition: concentration of sodium, potassium, phosphorus, calcium, magnesium and chlorine using automatic biochemical analyzer «BioSystem A15» (Spain) according to the recommendations of the International Federation of Clinical Chemistry (IFCC) Experts Panel. The results of the introduction in the laboratory rats of drug-induced toxic hepatitis indicate a decrease of metabolic activity of hepatocytes under this hepatopathology. The results showed a decrease in total protein by 17%, albumin by 11%, glucose by 6% , triacylglycerols by 53%, cholesterol by 54%, and an appreciable increase in thymol test value (by a factor of 2.8). Besides this, disruption of the liver pigment function, development of cytolytic syndrome and intrahepatic cholestasis were revealed in the affected animals. The increased activity of the studied blood enzymes (ALT by 28%, AST by 45%, LP by 30%, GGT by a factor of 2.1) confirmed these disruptions. The increase in AST/ALT by 12% ratio confirmed destructive changes in cell membranes, including mitochondrial membranes, caused by metabolic changes under the toxic influence of sodium diclofenac. The increased activities of α-amylase by a factor of 2.4 and lipase by a factor of 8.3 indicate complex negative changes in the organism, not only in liver structure, but also in the pancreas. The results of the study indicate hypocalcemia (decrease by 29%), hypophosphatemia (decrease by 47%) and hypomagnesaemia (decrease by 38%) and a simultaneous increase in the Ca : P ratio by 35%. The last mentioned changes can cause the development of endogenous osteopathy. The results of the study can be used in diagnostics of development of hepatopathology caused by the toxic effects of medication on the liver, for prevention of complications through the early implementation of effective correction therapy. 

References

Allen, K., Jaeschke, H., & Copple, B. L. (2011). Bile acids induce inflammatory genes in hepatocytes: A novel mechanism of inflammation during obstructive cholestasis. American Journal of Pathology, 178(1), 175–186.

Baghdasaryan, A., Fuchs, C. D., Osterreicher, C. H., Lemberger, U. J., Halilbasic, E., Pahlman, I., Graffner, H., Krones, E., Fickert, P., Wahlström, A., Stаhlman, M., Paumgartner, G., Marschall, H.-U., & Trauner, M. (2016). Inhibition of intestinal bile acid absorption improves cholestatic liver and bile duct injury in a mouse model of sclerosing cholangitis. Journal of Hepatology, 64(3), 674–681.

Bawany, M. Z., Bhutto, B., Youssef, W. I., Nawras, A., & Sodeman, T. (2013). Acute liver failure: an uncommon complication of commonly used medication. American Journal of Therapeutics, 20(5), 566–568.

Bhardwaj, S., & Chalasani, N. (2007). Lipid lowering agents that cause drug-induced hepatotoxicity. Clinics in Liver Disease, 11(3), 597–613.

Björnsson, E. S., & Hoofnagle, J. H. (2016). Categorization of drugs implicated in causing liver injury: Critical assessment based on published case reports. Hepatology, 63(2), 590–603.

Blas-Garcia, A., Apostolova, N., Valls-Belles, V., & Esplugues, J. V. (2016). Endoplasmic reticulum and mitochondria: Independent roles and crosstalk in fatty liver diseases and hepatic inflammation. Current Pharmaceutical Design, 22(18), 2607–2618.

Bunchorntavakul, C., & Reddy, K. R. (2012). Review article: Herbal and dietary supplement hepatotoxicity. Alimentary Pharmacology and Therapeutics, 37(1), 3–17.

Calderon, R. M., Cubeddu, L. X., Goldberg, R. B., & Schiff, E. R. (2010). Statins in the treatment of dyslipidemia in the presence of elevated liver aminotransferase levels: A therapeutic dilemma. Mayo Clinic Proceedings, 85, 349–356.

Canto, C., Menzies, K. J., & Auwerx, J. (2015). NAD(+) metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metabolism, 22, 31–53.

Chalasani, N. (2005). Statins and hepatotoxicity: Focus on patients with fatty liver. Hepatology, 41(4), 690–695.

Chang, C. Y., & Schiano, T. D. (2007). Drug hepatotoxicity. Alimentary Pharmacology and Therapeutics, 25, 1135–1151.

Cole, H. L., Pennycook, S., & Hayes, P. C. (2016). The impact of proton pump inhibitor therapy on patients with liver disease. Alimentary Pharmacology and Therapeutics, 44(11–12), 1213–1223.

Donnelly, M. C., Davidson, J. S., Martin, K., Baird, A., Hayes, P. C., & Simpson, K. J. (2017). Acute liver failure in Scotland: Changes in aetiology and outcomes over time (the Scottish Look-Back Study). Alimentary Pharmacology and Therapeutics, 45(6), 833–843.

Fabbrini, E., & Magkos, F. (2015). Hepatic steatosis as a marker of metabolic dysfunction. Nutrients, 7(6), 4995–5019.

Gariani, K., Menzies, K. J., Ryu, D., Wegner, C. J., Wang, X., Ropelle, E. R., Moullan, N., Zhang, H., Perino, A., Lemos, V., Kim, B., Park, Y.-K., Piersigilli, A., Pham, T. X., Yang, Y., Ku, C. S., Koo, S. I., Fomitchova, A., Cantó, C., Schoonjans, K. A., Sauve, A., Lee, J.-Y., & Auwerx, J. (2015). Eliciting the mitochondrial unfolded protein response via NAD repletion reverses fatty liver disease. Hepatology, 63(4), 1190–1204.

Gariani, K., Ryu, D., Menzies, K. J., Yi, H.-S., Stein, S., Zhang, H., Perino, A., Lemos, V., Katsyuba, E., Jha, P., Vijgen, S., Rubbia-Brandt, L., Kim, Y. K., Kim, J. T., Kim, K. S., Shong, M., Schoonjans, K., & Auwerx, J. (2017). Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease. Journal of Hepatology, 66(1), 132–141.

Gooijert, K. E., Havinga, R., Wolters, H., Wang, R., Ling, V., Tazuma, S., & Verkade, H. J. (2014). The mechanism of increased biliary lipid secretion in mice with genetic inactivation of bile salt export pump. AJP Gastrointestinal and Liver Physiology, 308(5), 450–457.

Guo, Z., Liu, X. M., Zhang, Q. X., Shen, Z., Tian, F. W., Zhang, H., Sun, Z. H., Zhang, H. P., & Chen, W. (2011). Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomised controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 21(11), 844–850.

Hryschenko, V. A., Tomchuk, V. A., Lytvynenko, O. N., Chernyshenko, V. O., Gryschuk, V. I., & Platonova, T. M. (2011). Otsinka proteyinsintezuyuchoyi funktsiyi pechinki za eksperimentalnogo gepatitu [An estimate of protein synthesis in liver under induced hepatitis]. Ukrainian Biochemistry Journal, 83(1), 63–68 (in Ukrainian).

Ilan, Y. (2016). Novel methods for the treatment of non-alcoholic steatohepatitis – targeting the gut immune system to decrease the systemic inflammatory response without immune suppression. Alimentary Pharmacology and Therapeutics, 44(11–12), 1152–1167.

Ipsen, D. H., Tveden-Nyborg, P., & Lykkesfeldt, J. (2016). Normal weight dyslipidemia: Is it all about the liver? Obesity, 24(3), 556–567.

Koliaki, C., Szendroedi, J., Kaul, K., Jelenik, T., Nowotny, P., Jankowiak, F., Herder, С., Carstensen, М., Krausch, М., Knoefel, W. T., & Schlensak, M. R. (2015). Adaptation of hepatic mitochondrial function in humans with non-alcoholic fatty liver is lost in steatohepatitis. Cell Metabolism, 21(5), 739–746.

Lin, S. C., Heba, E., Bettencourt, R., Lin, G. Y., Valasek, M. A., Lunde, O., Hamilton, G., Sirlin, C. B., & Loomba, R. (2017). Assessment of treatment response in non-alcoholic steatohepatitis using advanced magnetic resonance imaging. Alimentary Pharmacology and Therapeutics, 45(6), 844–854.

Malhi, H., & Kaufman, R. J. (2011). Endoplasmic reticulum stress in liver disease. Journal of Hepatology, 54(4). 795–809.

Melnychuk, D. O., & Gryshchenko, V. A. (2016). Sposib modelyuvannya toksichnogo gepatitu [Method modeling of toxic hepatitis]. Patent UA, 105657, 2016 (in Ukrainian).

Minhas, A. M., Usman, M. S., Khan, M. S., Fatima, K., Mangi, M. A., & Illovsky, M. A. (2017). Link between non-alcoholic fatty liver disease and atrial fibrillation: A systematic review and meta-analysis. Cureus, 9(4), e1142.

Moole, H., Ahmed, Z., Saxena, N., Puli, S. R., & Dhillon, S. (2015). Oral clindamycin causing acute cholestatic hepatitis without ductopenia: A brief review of idiosyncratic drug-induced liver injury and a case report. Journal of Community Hospital Internal Medicine Perspective, 5(4), 1–5.

Morita, M., Akai, S., Hosomi, H., Tsuneyama, K., Nakajima, M., & Yokoi, T. (2009). Drug-induced hepato-toxicity test using gamma-glutamylcysteine synthetase knockdown rat. Toxicology Letters, 189(2), 159–165.

Okudo, J., & Anusim, N. (2016). Hepatotoxicity due to clindamycin in combination with acetaminophen in a 62-year-old african american female: A case report and review of the literature. Case Reports in Hepatology, 2016, 1–5.

Rahmani, S., Asgary, S., Askari, G., Keshvari, M., Hatamipou, M., Feizi, A., & Sahebkar, A. (2016). Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial. Phytotherapy Research, 30(9), 1540–1548.

Saba, A. B., Oyagbemi, A. A., & Azeez, O. I. (2010). Amelioration of carbon tetrachloride-induced hepatotoxicity and haemotoxicity by aqueous leaf extract of Cnidoscolus aconitifolius in rats. Nigerian Journal of Physiological Sciences, 25, 130–147.

Serdyukov, Y. K., Lytvynenko, O. N., & Gryshchenko, V. A. (2008). Patologo-anatomichni ta gistologichni zmini v pechintsi shchuriv za medikamentoznogo gepatitu [Pathologo anatomical and histological changes are in liver of rats with drug induced hepatitis]. Suchasni Problemi Toksikologiyi, (2), 63–65 (in Ukrainian).

Shapiro, M. A., & Lewis, J. H. (2007). Causality assessment of drug-induced he-patotoxicity: Promises and pitfalls. Clinics in Liver Disease, 11(3), 477–505.

Taleb, M., Almasri, I., Siam, N., Najim, A., & Ahmed, A. (2014). The effect of atorvastatin on liver function among patients with coronary heart disease in Gaza Strip. Pharmacology and Pharmacy, 5(8), 781–788.

Teschke, R., Schulze, J., Schwarzenboeck, A., & Frenzel, C. (2013). Herbal hepatotoxicity: Suspected cases assessed for alternative causes. European Journal of Gastroenterology and Hepatology, 25(9), 1093–1098.

Verbeek, J., Lannoo, M., Pirinen, E., Ryu, D., Spincemaille, P., Vander Elst, I., Windmolders, P., Thevissen, К., Cammue, B. P. A., Van Pelt, J., Fransis, S., Van Eyken, Р., Groote, C. C.-D., Van Veldhoven, P. P., Bedossa, Р., Nevens, F., Auwerx, J., & Cassiman, D. (2015). Roux-en-y gastric bypass attenuates hepatic mitochondrial dysfunction in mice with non-alcoholic steatohepatitis. Gut, 64(4), 673–683.

Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Laboratorni metody doslidzhen u biolohiyi, tvarynnytstvi ta veterynarniy medytsyni [Laboratory methods of investigation in biology, stock-breeding and veterinary]. Spolom, Lviv (in Ukrainian).

Vyshtakaliuk, A. B., Nazarov, N. G., Porfiriev, A. G., Zueva, I. V., Minnechanova, O. A., Mayatina, O. V., Reznik, V. S., Zobov, V. V., & Nicolskyi, E. E. (2015). The influence of the Xymedon preparation (Hydroxyethyldimethyldihydropyrimidine) on the rat liver recovery under toxic damage induced by carbon tetrachloride. Biochemistry, Biophysics and Molecular Biology, 462(1), 143–146.

Published
2017-04-23
How to Cite
Gryshchenko, V. (2017). Biochemical properties of the plasma of rats with the experimentally induced hepatitis after oral administration of sodium diclofenac. Regulatory Mechanisms in Biosystems, 8(2), 191-196. https://doi.org/10.15421/021730