Effect of gold and silver nanoparticles on the morpho-functional state of the epididymis and prostate gland in rats

  • V. Y. Kalynovskyi Taras Shevchenko National University of Kyiv
  • A. S. Pustovalov Taras Shevchenko National University of Kyiv
  • G. Y. Grodzyuk Nanomedtech-LLC
  • N. S. Andriushyna Nanomedtech-LLC
  • M. E. Dzerzhynsky Taras Shevchenko National University of Kyiv
Keywords: nanosilver, nanogold, reproductive system, nanotoxicity

Abstract

Metals are widely used in modern medicine: iron, copper, zinc, vanadium, titanium – all of them are vital for treatment of different diseases. Recently a new field of medical technology has emerged, which focuses on the biomedical application of metallic nanoparticles, with a particular interest in a gold and silver-based materials. These structures are already used for photothermal anticancer therapy, drug delivery, bioimaging, radiosensitizers and as drugs themselves. Despite the wide usage of nanoparticles, we still don’t know much about the toxicity of nanomaterials. Nanotoxicological studies are mainly carried out in vitro, but in vivo effects are still elusive. Hence, we focused on the reproductive toxicity of gold and silver nanosized particles. Spherical 10–15 nm gold and silver nanoparticles were synthesized through the reduction of sodium tetrachloroaurate (III) and silver nitrate respectively with ascorbic acid in the presence of sodium polyphosphate as a coating and stabilizing agent. Next, these particles were administered intraperitoneally to the young and adult animals (1- and 6-months old respectively) at 1 mg/kg dose for 10 days. As quantitative markers of functional activity, we used the diameter of epididymal tubules, height and the nuclear cross-section of epididymal epitheliocytes and relative volume of the prostatic epithelium. We showed that intraperitoneal administrations of nanogold to young animals caused no significant histological changes, although we found a decrease in the nuclear cross-sectional area of epididymal epitheliocytes. At the same time, nanogold caused more morphometric changes in adult animals. Similar results were obtained from the nanosilver groups. Silver nanoparticles caused an observable decrease of sperm quantity in the lumen of epididymal tubules with a simultaneous increase in the number of extraepididymal cells in young animals. Morphometric parameters of the epididymis and prostate also decreased. Administration of nanosilver to adult animals also downregulated the morpho-functional state of both organs, although no histological changes were found. We showed that both nanogold and nanosilver can cause adverse effects on the functional activity of the epididymis and prostate of rats. It is worth mentioning that silver nanoparticles were generally more toxic than the gold ones, which correlates with their known mechanism of cellular action. Although the exact mechanisms of gold and silver action require further study, our results are useful for practical usage of nanomaterials in biomedical and clinical practice. 

References

Arvizo, R., Bhattacharyya, S., Kudgus, R., Giri, K., Bhattacharya, R., Mukherjee, P., 2012. Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future. Chem. Soc. Rev. 41(7), 2943–2970.

Asare, N., Instanes, C., Sandberg, W., Refsnes, M., Schwarze, P., Kruszewski, M., Brunborg, G., 2012. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology 291, 65–72.

Balasubramanian, S., Jittiwat, J., Manikandan, J., Ong, C.-N., Yu, L., Ong, W.-Y., 2010. Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats. Biomaterials 31(8), 2034–2042.

Barillo, D., Marx, D., 2014. Silver in medicine: A brief history BC 335 to present. Burns 40(Suppl. 1), S3–8.

Barkalina, N., Jones, C., Kashir, J., Coote, S., Huang, X., Morrison, R., Townley, H., Coward, K., 2014. Effects of mesoporous silica nanoparticles upon the function of mammalian sperm in vitro. Nanomedicine: Nanotechnology, Biology and Medicine 10(4), 859–870.

Bhattacharyya, K., Goldschmidt, B., Hannink, M., Alexander, S., Jurkevic, A., Viator, J., 2012. Gold nanoparticle–mediated detection of circulating cancer cells. Clinics in Laboratory Medicine 32(1), 89–101.

Biswas, N., Chattopadhyay, A., Sarkar, M., 2004. Effects of gold on testicular steroidogenic and gametogenic functions in immature male albino rats. Life Sciences 76(6), 629–636.

Bogdanoviс, G., Djordjeviс, A., 2016. Carbon nanomaterials: Biologically active fullerene derivatives. Srp. Arh. Celok. Lek. 144(3–4), 222–231.

Carocci, A., Rovito, N., Sinicropi, M., Genchi, G., 2014. Mercury toxicity and neurodegenerative effects. Rev. Environ. Contam. Toxicol. 229, 1–18.

Dreaden, E., Alkilany, A., Huang, X., Murphy, C., El-Sayed, M., 2011. The golden age: Gold nanoparticles for biomedicine. Chem. Soc. Rev. 41(7), 2740–2779.

Huppertz, B., 2011. Nanoparticles: Barrier thickness matters. Nat. Nanotechnol. 6(12), 758–759.

Kalynovskyi, V., Pustovalov, A., Grodzyuk, G., Andriushyna, N., Dzerzhynsky, M., 2016a. Vplyv nanochastynok ta ioniv zolota na morfo-funkcionalnyi stan sim’janykiv statevonezrilyh shchuriv [Testicular morpho-functional state of immature rats under the effect of gold nanoparticles and ions]. Bull. T. Shevchenko Nat. Univ. Kyiv Ser. Biol. 71(1), 23–26 (in Ukrainian).

Kalynovskyi, V., Pustovalov, A., Grodzyuk, G., Andriushyna, N., Dzerzhynsky, M., 2016b. Vplyv nanochastynok sribla na kisspeptyn-oposeredkovany regulatsiiu morfo-funkcional-nogo stanu sim’janykiv shchuriv [Kisspeptin-mediated regulation of the morpho-functional state of the rat testicles under the effect of silver nanoparticles]. Bull. T. Shevchenko Nat. Univ. Kyiv Ser. Probl. Physiol. Funct. Regul. 20(1), 8–11 (in Ukrainian).

Kim, J.-E., Shin, J.-Y., Cho, M.-H., 2012. Magnetic nanoparticles: An update of application for drug delivery and possible toxic effects. Arch. Toxicol. 86(5), 685–700.

Klein, J., Boudard, D., Cadusseau, J., Palle, S., Forest, V., Pourchez, J., Cottier, M., 2013. Testicular biodistribution of 450 nm fluorescent latex particles after intramuscular injection in mice. Biomed. Microdevices 15(3), 427–436.

Komatsu, T., Tabata, M., Kubo-Irie, M., Shimizu, T., Suzuki, K., Nihei, Y., Takeda, K., 2008. The effects of nanoparticles on mouse testis Leydig cells in vitro. Toxicology in vitro 22(8), 1825–1831.

Lee, J., Kim, Y., Song, K., Ryu, H., Sung, J., Park, J., Park, H., Song, N., Shin., B., Marshak, D., Ahn, K., Lee, J., Yu, I., 2013. Biopersistence of silver nanoparticles in tissues from Sprague–Dawley rats. Particle and Fibre Toxicology 10(1), 36.

Li, W., Wang, F., Liu, Z., Wang, Y., Wang, J., Sun, F., 2013. Gold nanoparticles elevate plasma testosterone levels in male mice without affecting fertility. Small 9, 1708–1714.

Lu, X., Liu, Y., Kong, X., Lobie, P., Chen, C., Zhu, T., 2013. Nanotoxicity: A growing need for study in the endocrine system. Small 9, 1654–1671.

Madeira, J., Gibson, D., Kean, W., Klegeris, A., 2012. The biological activity of auranofin: Implications for novel treatment of diseases. Inflammopharmacology 20(6), 297–306.

Melnik, E., Buzulukov, Y., Demin, V., Demin, V., Gmoshinski, I., Tyshko, N., Tutelyan, V., 2013. Transfer of silver nanoparticles through the placenta and breast milk during in vivo experiments on rats. Acta Naturae 5(3), 107–115.

Parchi, P., Vittorio, O., Andreani, L., Battistini, P., Piolanti, N., Marchetti, S., Poggetti, A., Lisanti, M., 2016. Nanoparticles for tendon healing and regeneration: Literature review. Front. Aging Neurosci. 22(8), 202.

Pećanac, M., Janjić, Z., Komarcević, A., Pajić, M., Dobanovacki, D., Misković, S., 2013. Burns treatment in ancient times. Med. Pregl. 66(5–6), 263–267.

Pietro, P., Strano, G., Zuccarello, L., Satriano, C., 2016. Gold and silver nanoparticles for applications in theranostics. Curr. Top. Med. Chem. 16(27), 3069–3102.

Pietroiusti, A., Campagnolo, L., Fadeel, B., 2013. Interactions of engineered nanoparticles with organs protected by internal biological barriers. Small 9, 1557–1572.

Politano, A., Campbell, K., Rosenberger, L., Sawyer, R., 2013. Use of silver in the prevention and treatment of infections: Silver review. Surg. Infect. (Larchmt) 14(1), 8–20.

Rai, M., Kon, K., Ingle, A., Duran, N., Galdiero, S., Galdiero, M., 2014. Broad-spectrum bioactivities of silver nanoparticles: The emerging trends and future prospects. Appl. Microbiol. Biotechnol. 98, 1951–1961.

Reyes-Esparza, J., Martínez-Mena, A., Gutiérrez-Sancha, I., Rodríguez-Fragoso, P., de la Cruz, G.G., Mondragón, R., Rodríguez-Fragoso, L., 2015. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application. J. Nanobiotechnol. 13, 83.

Salivonyk, O., Sachynska, O., Polyakova, L., Chaikovska, L., 2015. Vplyv nanochastynok zolota na organy reproduktyvnoi systemy samciv shchuriv [Effect of gold nanoparticles on reproductive organs of male rats]. Clin. Exp. Pathol. 14(2), 176–179.

Schädlich, A., Hoffmann, S., Mueller, T., Caysa, H., Rose, C., Göpferich, A., Li, J., Kuntsche, J., Mäder, K., 2012. Accumulation of nanocarriers in the ovary: A neglected toxicity risk? Journal of Controlled Release 160(1), 105–112.

Seeta, R., Benton, L., Pavitra, E., Yu, J., 2015. Multifunctional nanoparticles: Recent progress in cancer therapeutics. Chem. Commun. (Camb.) 51(68), 13248–13259.

Sheftel, A., Mason, A., Ponka, P., 2012. The long history of iron in the Universe and in health and disease. Biochim. Biophys. Acta. 1820(3), 161–187.

Thakur, M., Gupta, H., Singh, D., Mohanty, I., Maheswari, U., Vanage, G., Joshi, D., 2014. Histopathological and ultrastructural effects of nanoparticles on rat testis following 90 days (chronic study) of repeated oral administration. J. Nanobiotech. 12(1), 42.

Wang, L. Chen, C., 2016. Pathophysiologic mechanisms of biomedical nanomaterials. Toxicol. Appl. Pharm. 299, 30–40.

Zakhidov, S., Pavliuchenkova, S., Marshak, T., Rudoi, V., Dement’eva, O., Zelenina, I., Skuridin, S., Makarov, A., Khokhlov, A., Evdokimov, I., 2012. Effect of gold nanoparticles on mouse spermatogenesis. Izvestiia Akademii nauk. Seriia biologicheskaia 39(3), 279–287.

Zhao, X., Ze, Y., Gao, G., Sang, X., Li, B., Gui, S., Sheng, L., Sun, Q., Cheng, J., Cheng, Z., Hu, R., Wang, L., Hong, F., 2013. Nanosized TiO2-induced reproductive system dysfunction and its mechanism in female mice. PloS ONE 8(4), e59378.

Published
2016-09-29
How to Cite
Kalynovskyi, V. Y., Pustovalov, A. S., Grodzyuk, G. Y., Andriushyna, N. S., & Dzerzhynsky, M. E. (2016). Effect of gold and silver nanoparticles on the morpho-functional state of the epididymis and prostate gland in rats. Regulatory Mechanisms in Biosystems, 7(2), 106-111. https://doi.org/10.15421/021619