Prospects of using algae in biofuel production

Keywords: bioenergy, biodiesel, algae, algal biomass, biofuels from algae

Abstract

The development of industry, agriculture and the transport sector is associated with the use of various energy sources. Renewable energy sources, including biofuels, are highly promising in this respect. As shown by a number of scientific studies, a promising source for biofuel production that would meet modern requirements may be algal biomass. After activation of the third generation biodiesel production it was assumed that the algae would become the most advantageous source, because it is not only able to accumulate significant amounts of lipids, but could reduce the of agricultural land involved in biofuel production and improve air quality by sequestering CO2. However, a major problem is presented by the cost of algae biomass cultivation and its processing compared to the production of biodiesel from agricultural crops. In this regard, there are several directions of increasing the efficiency of biodiesel production from algae biomass. The first direction is to increase lipid content in algae cells by means of genetic engineering. The second direction is connected with the stimulation of increased accumulation of lipids by stressing algae. The third direction involves the search for new, promising strains of algae that will be characterized by faster biomass accumulation rate, higher content of TAG and the optimal proportions of accumulated saturated and unsaturated fatty acids compared to the already known strains. Recently, a new approach in the search for biotechnologically valuable strains of algae has been formed on the basis of predictions of capacity for sufficient accumulation of lipids by clarifying the evolutionary relationships within the major taxonomic groups of algae. The outcome of these studies is the rapid cost reduction of biofuel production based on algae biomass. All this emphasizes the priority of any research aimed at both improving the process of production of biofuels from algae, and the search for new sources for biofuel production. 

References

Abou-Shanab, R. A. I., Matter, I. A., Kim, S.-N., Oh, Y.-K., Choi, J., & Jeon, B.-H. (2011). Characterization and identification of lipid-producing microalgae species isolated from a freshwater lake. Biomass and Bioenergy, 35(7), 3079–3085.

Berchmans, H. J., & Hirata, S. (2008). Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Tech-nology, 99(6), 1716–1721.

Blyum, Y. B., Levchuk, O. M., Raxmetov, D. B., & Raxmetov, S. D. (2014). Biologichni resursy i texnologiyi dlya vyrobnycztva riznyx vydiv biopalyv [Biological resources and technologies for the production of various biofuels]. Visnyk NAN Ukrayiny, 11, 64–72 (in Ukrainian).

Bona, F., Capuzzo, A., Franchino, M., & Maffei, M. E. (2014). Semicontinuous nitrogen limitation as convenient operation strategy to maximize fatty acid production in Neochloris oleoabundans. Algal Research, 5, 1–6.

Borowitzka, M. A., & Moheimani, N. R. (2013). Algae for biofuels and energy. Springer Netherlands.

Bozhydarnyk, T. V., Tkachuk, V. V., & Rechun, O. U. (ed.) (2014). Problemy i perspektyvy formuvannya ta rozvytku rynku biopalyv v Ukrayini [Problems and perspectives of formation and development of a biofuel market in Ukraine]. Ekonomichnyj Chasopys – ХХІ, 11–12, 45–48 (in Ukrainian).

Breuer, G., Lamers, P. P., Martens, D. E., Draaisma, R. B., & Wijffels, R. H. (2012). The impact of nitrogen starvation on the dynamics of triacylglycerol accu-mulation in nine microalgae strains. Bioresource Technology, 124, 217–226.

Buntov, I. Y. (2014). Perspektyvy rozvytku doslidzhen zi stvorennya biopalyva v Ukrayini [Perspectives of developing research on biofuel production in Ukraine]. Biznes Inform, 12, 267–275 (in Ukrainian).

Challagulla, V., Fabbro, L., & Nayar, S. (2015). Biomass, lipid productivity and fatty acid composition of fresh water microalga Rhopalosolen saccatus cultivated under phosphorous limited conditions. Algal Research, 8, 69–75.

Chen, L., Liu, T., Zhang, W., Chen, X., & Wang, J. (2012). Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Biore-source Technology, 111, 208–214.

Chen, W., Zhang, C., Song, L., Sommerfeld, M., & Hu, Q. (2009). A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. Journal of Microbiological Methods, 77(1), 41–47.

Chernov, P. Y., & Ivko, S. G. (2010). Ustanovka dlya viroschuvannya ta pererob¬ki mikrovodorostey [A plant for growing and processing microalgae]. Patent, 89314 (in Russian).

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294–306.

Dubrovin, V. A., & Dragnev, S. V. (2006). Tehnologii i tehnicheskie sredstva proizvodstva biodizelnogo topliva iz rastitelnyih masel [Technologies and technical means of production of biodiesel fuel from vegetable oils]. Agrarna Texnika ta Obladnannya, 1(2), 67–73 (in Russian).

Durvasula, R., Hurwitz, I., Fieck, A., & Rao, D. V. S. (2015). Culture, growth, pigments and lipid content of Scenedesmus species, an extremophile microalga from Soda Dam, New Mexico in wastewater. Algal Research, 10, 128–133.

Dutta, S., Neto, F., & Coelho, M. C. (2016). Microalgae biofuels: A comparative study on techno-economic analysis and life-cycle assessment. Algal Research, 20, 44–52.

Eltgroth, M. L., Watwood, R. L., & Wolfe, G. V. (2005). Production and cellular localization of neutral long-chain lipids in the haptophyte algae Isochrysis galbana and Emiliania huxleyi1. Journal of Phycology, 41(5), 1000–1009.

Fedotkina-Ginczgejmer, N. G., & Fedotkin, I. M. (2011). Fotobioreaktorna ustanovka dlya vyroshhuvannya mikrovodorostej [Photobioreactor plant for growing microalgae]. Patent, 63746 (in Ukrainian).

Fields, F. J., & Kociolek, J. P. (2015). An evolutionary perspective on selecting high-lipid-content diatoms (Bacillariophyta). Journal of Applied Phycology, 27(6), 2209–2220.

Fields, M. W., Hise, A., Lohman, E. J., Bell, T., Gardner, R. D., Corredor, L., Moll, K., Peyton, B. M., Characklis, G. W., & Gerlach, R. (2014). Sources and resources: Importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Applied Microbiology Biotechnology, 98, 4805–4816.

Fujii, K., Matsunobu, S., & Takahashi, Y. (2014). Characterization of the new microalgal strains, Oogamochlamys spp., and their potential for biofuel production. Algal Research, 5, 164–170.

Gamkalo, Z. G., & Maksishko, M. (2017). Biotehnoenergetika v Ukraine: sosto-yanie, problemyi i perspektivyi pererabotki othodov selskohozyaystvennogo proizvodstva [Biotechnoenergetics in Ukraine: State, problems and perspecti-ves of agricultural waste processing]. Vestnik IrGSHA, 79, 152–157 (in Russian).

Gao, B., Yang, J., Lei, X., Xia, S., Li, A., & Zhang, C. (2015). Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultu¬red with different initial nitrate supplies. Journal of Applied Phycology, 28(2), 821–830.

Goncalves, E. C., Wilkie, A. C., Kirst, M., & Rathinasabapathi, B. (2016). Meta¬bolic regulation of triacylglycerol accumulation in the green algae: Identifica¬tion of potential targets for engineering to improve oil yield. Plant Biotechno¬logy Journal, 14, 1649–1660.

Grinyuk, I. (2009). Biopalyvo z vodorostej [Biofuels from algae]. Agrosektor, 36(6), 26–27 (in Ukrainian).

Guo, X., Fan, C., Chen, Y., Wang, J., Yin, W., Wang, R. R. C., & Hu, Z. (2017). Identification and characterization of an efficient acyl-CoA: Diacylglycerol acyltransferase 1 (DGAT1) gene from the microalga Chlorella ellipsoidea. BMC Plant Biology, 17(1), 48.

Hildebrand, M., Davis, A. K., Smith, S. R., Traller, J. C., & Abbriano, R. (2012). The place of diatoms in the biofuels industry. Biofuels, 3(2), 221–240.

Jako, C. (2001). Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferase enhances seed oil content and seed weight. Plant Physiology, 126(2), 861–874.

Jia, J., Han, D., Gerken, H. G., Li, Y., Sommerfeld, M., Hu, Q., & Xu, J. (2015). Molecular mechanisms for photosynthetic carbon partitioning into storage neutral lipids in Nannochloropsis oceanica under nitrogen-depletion conditions. Algal Research, 7, 66–77.

Johnson, T. J., Jahandideh, A., Johnson, M. D., Fields, K. H., Richardson, J. W., Muthukumarappan, K., Gibbons, W. R. (2016). Producing next-generation biofuels from filamentous cyanobacteria: An economic feasibility analysis. Algal Research, 20, 218–228.

Khozingoldberg, I., & Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry, 67(7), 696–701.

Korkhovoy, V. I., & Blume, Y. B. (2013). Biodiesel from microalgae: Ways for increasing the effectiveness of lipid accumulation by genetic engineering methods. Cytology and Genetics, 47(6), 349–358.

Li, Y., Fei, X., & Deng, X. (2012). Novel molecular insights into nitrogen starvation-induced triacylglycerols accumulation revealed by differential gene expression analysis in green algae Micractinium pusillum. Biomass and Bioenergy, 42, 199–211.

Maltseva, I. A., Maltsev, E. I., & Solonenko, A. N. (2017). Vodorosli pochv dubrav stepnoy zonyi Ukrainyi [Algae of the soils of groves in the Ukrainian steppe zone]. Аlgologia, 27(3), 323–336 (in Russian).

Moheimani, N. R., McHenry, M. P., de Boer, K., & Bahri, P. A. (Eds.). (2015). Biomass and biofuels from microalgae. In: Biofuel and biorefinery technologies. Springer-Verlag GmbH.

Newby, D. T., Mathews, T. J., Pate, R. C., Huesemann, M. H., Lane, T. W., Wahlen, B. D., Engler, R. K., Feris, K. P., & Shurin, J. B. (2016). Assessing the potential of polyculture to accelerate algal biofuel production. Algal Research, 19, 264–277.

Petrushkina, M., Gusev, E., Sorokin, B., Zotko, N., Mamaeva, A., Filimonova, A., Kulikovskiy, M., Maltsev, Y., Yampolsky, I., Guglya, E., Vinokurov, V., Namsaraev, Z., & Kuzmin, D. (2017). Fucoxanthin production by heterokont microalgae. Algal Research, 24, 387–393.

Piligaev, A. V., Sorokina, K. N., Bryanskaya, A. V., Peltek, S. E., Kolchanov, N. A., & Parmon, V. N. (2015). Isolation of prospective microalgal strains with high saturated fatty acid content for biofuel production. Algal Research, 12, 368–376.

Presidium of the National Academy of Sciences of Ukraine (2010). Decision "On realization of targeted complex program of scientific research of the National Academy of Sciences of Ukraine: "Biomass as Fuel Raw Materials" ("Biofuels")".

Ramanan, R., Kim, B. H., Cho, D. H., Oh, H. M., & Kim, H. S. (2016). Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnology Advances, 34(1), 14–29.

Ruffing, A. M., & Trahan, C. A. (2014). Biofuel toxicity and mechanisms of biofuel tolerance in three model cyanobacteria. Algal Research, 5, 121–132.

Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O., & Hankamer, B. (2008). Second generation biofuels: High-efficiency microalgae for biodiesel production. BioEnergy Research, 1(1), 20–43.

Scholz, B., & Liebezeit, G. (2013). Biochemical characterization and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthorn tidal flat (southern North Sea). Journal of Applied Phycology, 25(2), 453–465.

Scranton, M. A., Ostrand, J. T., Fields, F. J., & Mayfield, S. P. (2015). Chlamydo-monas as a model for biofuels and bio-products production. The Plant Journal, 82(3), 523–531.

Shang, C., Bi, G., Yuan, Z., Wang, Z., Alam, M. A., & Xie, J. (2016). Discovery of genes for production of biofuels through transcriptome sequencing of Dunaliella parva. Algal Research, 13, 318–326.

Slocombe, S., & Benemann, J. (Eds.). (2016). Microalgal production for biomass and high-value products. CRC Press.

Stepanek, J. G., Fields, F. J., & Kociolek, J. P. (2016). A comparison of lipid content metrics using six species from the genus Halamphora (Bacillario¬phyta). Biofuels, 7(5), 521–528.

Subba Rao, D. V., Pan, Y., & Al-Yamani, F. (2005). Growth and photosynthetic rates of Chlamydomonas plethora and Nitzschia frustula cultures isolated from Kuwait Bay, Arabian Gulf, and their potential as live algal food for tropical mariculture. Marine Ecology, 26(1), 63–71.

Sun, X., Cao, Y., Xu, H., Liu, Y., Sun, J., Qiao, D., & Cao, Y. (2014). Effect of nitrogen-starvation, light intensity and iron on triacylglyceride/carbohydrate production and fatty acid profile of Neochloris oleoabundans HK-129 by a two-stage process. Bioresource Technology, 155, 204–212.

Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H. H., Mirzajanzadeh, M., Shafaroudi, S. M., & Bakhtiari, S. (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2, 258–267.

Taylor, D. C., Zhang, Y., Kumar, A., Francis, T., Giblin, E. M., Barton, D. L., Ferrie, J. R., Laroche, A., Shah, S., Zhu, W., Snyder, C. L., Hall, L., Rakow, G., Harwood, J. L., & Weselakee, R. J. (2009). Molecular modification of triacyl-glycerol accumulation by over-expression of DGAT1 to produce canola with increased seed oil content under field conditions. Botany, 87, 533–543.

Titlova, O. A. (2015). Vodorosti yak alternatyvne dzherelo energiyiyi [Algae as the alternative source of energy]. Xolodylna texnika ta texnologiya, 51(5) (in Ukrainian).

Unkefer, C. J., Sayre, R. T., Magnuson, J. K., Anderson, D. B., Blaby, I. K., Brown, J. K., Carleto, M., Cattolico, R. A., Dale, T., Devarenne, T. P., Downes, C. M., Dutcher, S. K., Fox, D. T., Goodenough, U., Jaworski, J., Holladay, J. E., Kramer, D. M., Koppisch, A. T., Lipton, M. S., Marrone, B. L., McCormick, M., Molnár, I., Mott, J. B., Ogden, K. L., Panisko, E. A., Pellegrini, M., Polle, J., Richardson, J. W., Sabarskyo, M., Starkenburg, S. R., Stormo, G. D., Teshima, M., Twary, S. N., Unkefer, P. J., Yuan, J. S., & Olivares, J. A. (2017). Review of the algal biology program within the National Alliance for Advanced Biofuels and Bioproducts. Algal Research, 22, 187–215.

Valdez-Ojeda, R., González-Muñoz, M., Us-Vázquez, R., Narváez-Zapata, J., Chavarria-Hernandez, J. C., López-Adrián, S., Barahona-Pérez, F., Toleda¬no-Thompson, T., Garduño-Solórzano, G., & Escobedo-Gracia Medrano, R. M. (2015). Characterization of five fresh water microalgae with potential for biodiesel production. Algal Research, 7, 33–44.

Xu, J., Francis, T., Mietkiewska, E., Giblin, E. M., Barton, D. L., Zhang, Y., Zhang, M., & Taylor, D. C. (2008). Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. Plant Biotechnology Journal, 6(8), 799–818.

Yelizarov, O. I., & Yelizarov, M. O. (2011). Ekologichni j energetychni aspekty shtuchnogo vyluchennya cianobakterij z akvatoriyi dniprovskyx vodosho-vyshh [Environmental and energy aspects of artificial isolation of cyanobac-teria from the aquatorium of the Dnipro reservoirs]. Transactions of Kremen-chuk Mykhailo Ostrohradskyi National University, 67(2), 140–142 (in Ukrainian).

Yoon, K., Han, D., Li, Y., Sommerfeld, M., & Hu, Q. (2012). Phospholipid: Diacylglycerol acyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii. The Plant Cell, 24(9), 3708–3724.

Zhang, J. J., Wan, L. L., Xia, S., Li, A. F., & Zhang, C. W. (2013). Morphological and spectrometric analyses of lipids accumulation in a novel oleaginous mic-roalga, Eustigmatos cf. polyphem (Eustigmatophyceae). Bioprocess and Bio-systems Engineering, 36(8), 1125–1130.

Zolotaryova, O. K., Shnyukova, Е. І., Sivash, О. О., Mihaylenko, N. F., & Zolotaryova, О. K. (2008). Perspektivyi ispolzovaniya mikrovodorosley v biotehnologii [Perspectives of microalgae use in biotechnology]. Alterpress, Kyiv (in Russian).

Published
2017-08-14
How to Cite
Maltsev, Y. I., Konovalenko, T. V., Barantsova, I. A., Maltseva, I. A., & Maltseva, K. I. (2017). Prospects of using algae in biofuel production. Regulatory Mechanisms in Biosystems, 8(3), 455-460. https://doi.org/10.15421/021770