The influence of a selenium-chromium-lipid complex obtained from Chlorella vulgaris on the energy metabolism in rats with experimental diabetes

Keywords: microalgae, metabolism, micronutrients, streptozotocin, nicotinamide


One of the leading roles in treating diabetes mellitus belongs to chrome ions therapy (III), especially in the complex with selenium (IV). Currently selenium is obtained from unicellular algae, which contain biologically active substances and which are capable of accumulating exogenous microelements. By incubating unicellular algae Chlorella vulgaris Biej. in the conditions of aquaculture with sodium selenite (IV) and chromium (III) chloride, we obtained a biologically active lipid substance which contains selenium and chromium. The substance was tested for the impact on energy metabolism of animals exposed to experimentally induced diabetes mellitus. The diabetes was caused by modeling obesity of the animals with further injection of streptozotocin in the amount of 65 mg/kg and nicotinamide at the dose of 230 mg/kg. The rats were intragastrically injected with 1 ml of 1% starch solution which contained a selenium-chrome-lipid complex extracted from the Chlorella containing 0.6 µg of selenium, 1.05 µg of chrome and 0.5 mg of lipids for prophylactic, therapeutic and prophylactic-therapeutic purposes; the other group of rats for therapeutic purposes was injected with starch solution with the same composition of microelements in inorganic form – sodium selenite (IV) and chromium chloride (III). This paper presents the results of our study of the impact of organic and inorganic compounds of chrome and selenium on the energetic metabolism of rats exposed to experimental diabetes mellitus. The analysis determined that in the rats’ organism, the selenium-chrome-lipid complex from the Chlorella improved the indicators of the energetic metabolism – in the group of rats which received it for therapeutic purposes, we observed an up to 7.5 fold increase in the activity of succinate dehydrogenase compared to the rats which did not receive therapeutic treatment. The increase in the activity of succinate dehydrogenase corresponded to the increase in the activity of cytochrome c oxidase to 17.2% – in the group of rats injected with the substance for therapeutic purposes. Also, the selenium-chrome-lipid complex activated NADPH-glutamatedehydrogenase in groups of rats which received it for prophylactic and therapeutic-prophylactic purposes. A decrease in NADPH-GDH was observed in all groups of rats which were injected with the Chlorella complex, and its activation was observed only in the group of rats injected with inorganic forms of selenium and chrome. In rats injected with the Chlorella complex, we observed change in the ratio of NAD and NADPH-GDH towards increase. This indicates the intensification of the energy metabolism in the animals’ liver by using aminoacids as energetic substances. In the conditions of injecting inorganic forms of selenium and chrome, the ratio of NAD/NADPH decreased. Therefore, the results allow us to consider the algal complex obtained from Chlorella to be effective for regulating the energetic metabolism of subjects suffering from diabetis mellitus compared to the use of inorganic forms of chrome and selenium. 


Aguirre, L., Arias, N., Macarulla, T., Gracia, A., & Portillo, M. (2011). Beneficial effects of quercetin on obesity and diabetes. The Open Nutraceuticals Journal, 4, 189–198.

Brownley, K. A., Boettiger, C. A., Young, L. A., & Cefalu, W. T. (2015). Dietary chromium supplementation for targeted treatment of diabetes patients with comorbid depression and binge eating. Medical Hypotheses, 85(1), 45–48.

Cefalu, W. T, & Hu, F. B. (2004). Role of chromium in human health and in diabetes. Diabetes Care, 27(11), 2741–2751.

Cheng, H. H., Lai, M. H., Hou, W. C., & Huang, C. L. (2004) Antioxidant effects of chromium supplementation with type 2 diabetes mellitus and euglycemic subjects. Journal of Agricultural and Food Chemistry, 52(5), 1385–1389.

Dedkov, Y. M., & Musatov, A. V. (2002). Selen: Byolohycheskaya rol’, khymy cheskye svoystva y metody opredelenyya [Selenium: Biological role, chemical properties and methods of determination]. Chemistry, 1688, 19–23 (in Russian).

Dudina, Y. V. (2005). Effect of kainate-induced experimental epilepsy on NADPH-diaphorase and calcium-binding proteins in rat hippocampal neurons. Bulletin of Experimental Biology and Medicine, 139(3), 309–312.

Ferreica, F. M., Palmeira, C. M, Seica, R., Moreno, A. J., & Santos, M. S. (2003). Diabetes and mitochondrial bioenergetics: Alterations with age. Journal of Biochemical and Molecular Toxicology, 17(4), 214–222.

Forceville, X., Vitoux, D., Gauzit, R., Combes, A., Lahilaire, P., & Chappuis, P. (1998). Selenium, systemic immune response syndrome, sepsis and outcome incritically ill patients. Critical Care Medicine, 26(9), 1536–1544.

Ganguly, R., Sahu, S., Ohanyan, V., Haney, R., Chavez, R., Shah, S., Yalaman chili, S., & Raman, P. (2017). Oral chromium picolinate impedes hypergly cemia-induced atherosclerosis and inhibits proatherogenic protein TSP-1 expression in STZ-induced type 1 diabetic ApoE-/- mice. Scientific Reports, 7, 45279.

Ganguly, R., Wen, A. M., Myer, A. B., Czech, T., Sahu, S., Steinmetz, N. F., & Raman, P. (2016). Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale, 8(12), 6542–6554.

Grattagliano, I., de Bari, O., Bernardo, T. C., Oliveira, P. J., Wang, D. Q., & Portincasa, P. K. (2012). Role of mitochondria in nonalcoholic fatty liver disease – from origin to propagation. Clinical Biochemistry, 45, 610–618.

Grubinko, V. V., & Arsan, V. O. (1998). Rol’ hlutamat – hlutaminovoho peretvo rennya v rehulyatsiyi homeostazu v mozku tvaryn za stres-diyi faktoriv zovnishn’oho seredovyshcha [The role of glutamate-glutamine in the regulation of homeostasis in the brain of animals subject to stress-action from environmental factors]. Ecological Physiology, 1, 13–18 (in Ukrainian).

Grytsiuk, M. I., Boychuk, T. N., & Petryshyn, A. I. (2014). Porivnyal’na kharakte rystyka eksperymental’nykh modeley diabetu [Comparative characteristic of experimental models of diabetes]. World of Medicine and Biology, 44, 199–203 (in Ukrainian).

Gupte, R. S., Floyd, B. C., Kozicky, M., George, S., Ungvari, Z. I., Neito, V., Wolin, M. S., & Gupte, S. A. (2009). Synergistic activation of glucose-6-phosphate dehydrogenase and NAD(P)H oxidase by Src kinase elevates superoxide in type 2 diabetic, Zucker fa/fa, rat liver. Free Radical Biology and Medicine, 47(3), 219–228.

He, K., Zhao, L., Daviglus, M. L., Dyer, A. R., Van Horn, L., Garside, D., Zhu, L., Guo, D., Wu, Y., Zhou, B., & Stamler, J. (2008). Association of monoso dium glutamate intake with overweight in Chinese adults: The INTERMAP study. Obesity, 16(8), 1875–1880.

Hokin, L. E., & Hexum, T. D. (1992). Studies on the characterization of the sodium – potassium transport adenosinetriphosphatase оn the role of phospholipids in the enzyme. Archives of Biochemistry and Biophysics, 151(2), 58–61.

Hua, Y., Clark, S., Ren, J., & Sreejayan, N. (2012). Molecular mechanisms of chromium in all eviating insulin resistance. Journal of Nutritional Biochemistry, 23(4), 313–319.

Inzucchi, S., Bergenstal, R. M., & Buse, J. B. (2012). Management of hyperglyce mia in type 2 diabetes: A patient-centered approach. Position Statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 35, 1–16.

Iskra, R. Y., & Vlizlo, V. V. (2013). Osoblyvosti funktsionuvannya systemy anty oksydantnoho zakhystu v erytroyidnykh klitynakh i tkanynakh svyney za diyi khromu khlorydu [Peculiarities of functioning of the system of antioxidant protection in erythroid cells and tissues of pigs under the action of chromium chloride]. Ukrainian Biochemical Journal, 85(3), 96–102 (in Ukrainian).

Islam, M. S., & Wilson, R. D. (2012). Experimentally induced rodent models of type 2 diabetes. Methods in Molecular Biology, 933, 161–174.

Islam, S., & Loots, D. T. (2009). Experimental rodentmodels of type 2 diabetes: A rewiev. Methods and Findings in Experimental and Clinical Pharmacology, 31(4), 249–261.

Jain, S. K., & Kannan, K. (2001). Chromium chloride inhibits oxidative stress and TNF-a secretion caused by exposure to high glucose in cultured U937 monocytes. Biochemical and Biophysical Research Communications, 289, 687–691.

Jain, S. K., Rains, J. L., & Croad, J. L. (2007). High glucose and ketosis (acetoace tate) increases, and chromium niacinate decreases, IL-6, IL-8, and MCP-1 secretion and oxidative stress in U937 monocytes. Antioxidants and Redox Signaling, 9, 1581–1590.

Jeong, H., Kwon, H., Kim, M. (2009). Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto Kakizaki and normal Wistar rats. Nutrition Research and Practice, 3(1), 23–30.

Jeyakumar, S. M., Vajreswari, A., & Giridharan, N. V. (2006). Chronic dietary vitamin A supplementation regulates obesity in an obese mutant WNIN/Ob rat model. Obesity, 14, 52–59.

Johnson, R. N., Metcalf, P. A., & Baker, J. R. (1982). Fructosamine: A new approach to the estimation of serum glycosylprotein. An index of diabetic control. Clinica Chimica Acta, 127(1), 87–95.

Keyts, M. (1975). Tekhnika lipidolohii. Vydelenie, analiz i identifikatsiya lipidov [Technique of lipidology. Isolation, analysis, identification of lipids]. Mir, Moscow (in Russian).

Kharroubi, A. T, & Darwish, H. M. (2015). Diabetes mellitus: The epidemic of the century. World Journal of Diabetes, 6(6), 850–867.

Kim, Y. J., Kwon, S., & Kim, M. K. (2009). Effect of Chlorella vulgaris intake on cadmium detoxification in rats fed cadmium. Nutrition Research and Practice, 3(2), 89–94.

Laakso, M., & Kuusisto, J. (2014). Insulin resistance and hyperglycaemia in cardiovascular disease development. Nature Reviews Endocrinology, 10(5), 293–302.

Lee, H. S., Park, H. J., & Kim, M. K. (2008). Effect of Chlorella vulgaris on lipid metabolism in Wistar rats fed high fat diet. Nutrition Research and Practice, 2(4), 204–210.

Lee, H. S., & Kim, M. K. (2009). Effect of Chlorella vulgaris on glucose metabo lism in Wistar rats fed high fat diet. Journal of Medicinal Food, 12(5), 1029–1037.

Lowry, O. H., Rosenbroug, N. I., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal Biological Chemistry, 193(1), 265–275.

Lukashiv, O. Y., Bodnar, O. I., & Grubinko, V. V. (2016). Vplyv na metabolichni protsesy v orhanizmi selenovmisnykh biodobavok ta perspektyvy yikh vykorystannya [Effect on metabolic processes in the organism of selenium-containing bio-supplements and prospects for their use]. Bulletin of Biology and Medicine, 130, 30–34 (in Ukrainian).

Lukashiv, O. Y., Bodnar, O. I., Vasilenko, O. V., & Grubinko, V. V. (2016). The effect of selenium-chrome-lipid substance from Chlorella vulgaris Biej. on energy metabolism in rats. World Science, 7(11), 17–21.

Lukashiv, O. Y., Bodnar, O. I., Vinyars’ka, H. B., & Grubinko, V. V. (2016). Vplyv selen-khrom-lipidnoyi substantsiyi iz Chlorella vulgaris Biej. na oksydatyvnyy status shchuriv [Effect of selenium-chromium-lipid substance on Chlorella vulgaris Biej. the oxidative status of rats]. Medical and Clinical Chemistry, 18(2), 28–33 (in Ukrainian).

Luz, J., Pasin, V. P., Silva, D. J. M., Zemdegs, J. C., Amaral, L. S., & Affonso-Silva, S. M. (2010). Effect of food restriction on energy expenditure of monosodium glutamate-induced obese rats. Nutrition and Metabolism, 56(1), 31–35.

Marushchak, M. I., & Krynyts’ka, I. Y. (2012). Sposib modelyuvannya alimentarnoho ozhyrinnya [A way to model alimentary obesity]. Patent of Ukraine No 68839, MPK G09B 23/28 (2006.01), A61K 31/195 (2006.01), application number u201112114 (in Ukrainian).

Metzler, D. E. (2004). Biochemistry: The chemical reactions of living cells. 2nd ed. Academic Press, New York – London.

Minyuk, G. S., & Drobetskaya, I. V. (2000). Vliyaniye selena na zhiznedeyatel’ nost’ morskikh i presnovodnykh mikrovodorosley [Effect of selenium on the activity of marine and freshwater microalgae]. Ecology of the Sea, 54, 26–37 (in Russian).

Mokryy, V. Y., Ziablitsev, S. V., & Kryshtal’, M. V. (2016). Osoblyvosti formu vannya okysnoho stresu u patsiyentiv z tsukrovym diabetom 2 typu v zalezh nosti vid tryvalosti zakhvoryuvannya i stati [Features of the formation of oxidative stress in patients with type 2 diabetes, depending on the duration of the disease and sex]. International Endocrinology Journal of the Year, 77, 67–71 (in Ukrainian).

Morino, K., Petersen, K., Shulman, F., & Morino, G. I. (2006). Molecular mecha nisms of insulin resistance in humans and their potential links with mito chondrial dysfunction. Diabetes, 55(2), 9–15.

Nolan, J. J., & Færch, K. (2012). Estimating insulin sensitivity and beta-cell function: Perspectives from the modern pandemics of obesity and type 2 diabetes. Diabetologia, 55(11), 2863–2867.

Perales, H. V., Pena-Castro, J. M., & Canizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64, 1–10.

Prokhorova, M. I., ed. (1982). Metody biokhimichnykh doslidzhen’ (lipidnyy ta enerhetychnyy metabolizm) [Methods of biochemical studies (lipid and energy metabolism)]. Leningrad University Press, Leningrad (in Russian).

Reardon, W., Ross, R. J., Sweeney, M. G., Luxon, L. M., Pembrey, M. E., Har ding, A. E., & Trembath, R. C. (1992). Diabetes mellitus associated with a pathogenic point mutation in mitochondrial DNA. Lancet, 8832, 1376–1379.

Reaven, G. M. (2011). Relationships among insulin resistance, type 2 diabetes, es sential hypertension, and cardiovascular disease: Similarities and differences. Journal of Clinical Hypertension (Greenwich), 13(4), 238–243.

Rеznіkоv, О. G. (2003). Zаgаl’nі еtytchnі pryncypy еksperymеntіvnа tvаrynаch [General ethical principles of experiments on animals]. The first national congress on bioethics. Endocrinology, 8(1), 142–145.

Shibata, S., Natori, Y., Nishihara, T., Tomisaka, K., Matsumoto, K., Sansawa, H., Nguyen, V. (2003). Antioxidant and anti-cataract effects of Chlorella on rats with streptozotocin-induced diabetes. Journal of Nutritional Science and Vitaminology, 49(5), 334–339.

Sof’yn, A. V., Shatylov, V. R., & Kretovych, V. L. (1984). Hlutamatdehydrohe nazy odnokletochnoy zelenoy vodorosly. Kynetycheskye svoystva [Gluta mate dehydrogenase of unicellular green algae. Kinetic properties]. Biochemistry, 49(2), 334–345 (in Russian).

Spasov, A. A., Voronkova, M. P., Snyhur, H. L., Cheplyaeva, N. Y., & Chepur nova, M. V. (2011). Eksperymental’naya model’ sakharnoho dyabeta typa 2 [Experimental model of type 2 diabetes]. Biomedicine, 3, 12–18 (in Russian).

Stancic, A., Filipovic, M., Ivanovic-Burmazovic, I., Masovic, S., Jankovic, A., Otasevic, V., Korac, A., Buzadzic, B., & Korac, B. (2017). Early energy metabolism-related molecular events in skeletal muscle of diabetic rats: The effects of l-arginine and SOD mimic. Chemico-Biological Interactions, 272, 188–196.

Straus, W. (1954). Colorimetric microdetermination of cytochromeoxidase. Jour nal of Biological Chemistry, 207(2), 733–743.

Sundaram, B., Singhal, K., & Sandhir, R. (2012). Ameliorating effect of chromium administration on hepatic glucose metabolism in streptozotocin-induced experimental diabetes. Biofactors, 38, 59–68.

Tatsumi, T., Matoba, S., Kobara, M, Keira, N., Kawahara, A., Tsuruyama, K., Tanaka, T., & Katamura, M. (1998). Energy metabolism after ischemic preconditioning in streptozotocin-induced diabetic rat hearts. Journal of the American College of Cardiology, 31(3), 707–715.

Vincent, J. B. (2012). Is chromium effective as a nutraceutical. The bioinorganic chemistry of chromium, 55–79.

Vincent, J. B. (2012). Is chromium essential the evidence. The bioinorganic chemistry of chromium, 7–30.

Vincent, J. B. (2012). Is chromium (III) effective as a therapeutic agent. The bioinorganic chemistry of chromium, 81–123.

Vincent, J. B. (2013). Chromium: Isitessential, pharmacologically relevant, ortoxic? Metal Ions Life Sciences, 13, 171–198.

Vlasenko, M., Semenyuk, I., & Slobodyanyuk, G. (2011). Diabet i ozhyrinnya – epidemiya XXI stolittya: Suchasnyy pidkhid do problemy [Diabetes and obesity – The epidemic of the XXI century: A modern approach to problems]. Ukrainian Therapeutic Journal, 2, 50–55 (in Ukrainian).

Yatskiv, O. S., & Patsay, Y. O. (2009). Spektrofotometrychne vyznachennya Cr (III) z dopomoyu khromazurolu S v prysutnosti Cr (VI) [Spectrophotometric determination Cr (III) with chromazoorol S in the presence of Cr (VI)]. Methods and Objects of Chemical Analysis, 4(1), 43–47 (in Ukrainian).

Zanozyna, O. V., Borovkov, N. N., & Shcherbatyuk, T. H. (2010). Svobodno ra dykal’noe okyslenye pry sakharnom dyabete 2-ho typa: Ystochnyky obrazo vanyya, sostavlyayushchye, patohenetycheskye mekhanyzmy toksychnosty [Free radical oxidation in type 2 diabetes, sources of formation, constitutive, pathogenetic mechanisms of toxicity]. Modern Technology in Medicine, 3, 104–112 (in Russian).

Zolotor’ova, O. K., Shnyukova, E. I., Sivash, O. O., & Mikhaylenko, N. F. (2008). Perspektivi vikoristannya mikrovodorostey u biotekhnologiyi [Prospects for the use of microalgae in biotechnology]. Al’terpres, Kyiv (in Ukrainian).

How to Cite
Lukashiv, O. Y., & Grubinko, V. V. (2017). The influence of a selenium-chromium-lipid complex obtained from Chlorella vulgaris on the energy metabolism in rats with experimental diabetes. Regulatory Mechanisms in Biosystems, 8(3), 369-376.