Condition of the prooxidant-antioxidant system of some strains of Basidiomycetes

  • O. V. Fedotov Donetsk National Medical University
Keywords: prooxidant activity, antioxidant activity, mushrooms, surface cultivation, glucose-peptone medium


The article deals with the calculation and comparison indications of the condition of the prooxidant-antioxidant system (PAS) of strains of Basidiomycetes under periodic surface cultivation on a glucose-peptone medium. The research material consisted of the mycelium and culture filtrate (CF) from 57 strains, 52 of them belonging to 7 species of the order Agaricales and 5 belonging to 5 species of the order Polyporales. The intensity of the processes of lipid peroxidation was determined by a modified spectrophotometric method for contents of active products to thiobarbituric acid. Total antioxidant activity (АОА) of the mycological material was evaluated by intensity of inhibition from accumulated products of lipid peroxide oxidation (LPO) in a model reaction of oxidation by Twin-80 oxygen of the air. From the data obtained, indicators of prooxidant activity (POA), indicators of reserve of substrate peroxidation (SPO) and the balance coefficient of the prooxidant-antioxidant system (CbPАS) were calculated. It was established that strains of Basidiomycetes are characterized by significant predominance of prooxidant activity characteristic of PAS in the culture filtrate in comparison with the mycelium indicator. The highest values of POA in the Culture Filtrate were observed on the 12-th day of cultivation for the strain Р-089 genus Pleurotus and strain Gl-2 genus Ganoderma, and for the mycelium on the 9-th day of cultivation for the strains Р-сіtr, Р-089, Р-er and Р-082 of the genus Pleurotus. There is a direct dependence between the indicators of POA in the CF and mycelium for each strain, this dependence and level of indication do not reflect their systematic placement. We distinguished a more significant prevalence of indicators of reserve of substrates peroxidation of mycelium for most strains, than for such indicators with CF The highest value of reserve SPO of mycelium was recorded for strains Р-447, Р-998, Р-039, Р-94, Р-2175, Р-сіtr, Р-er, D-140 of the genus Pleurotus and strains F-107, F-610 of the genus Flammulina. For the majority of the strains there was a clear prevalence of the values of the balance coefficients for PAS of mycelium over those of CF. Maximum values of the balance coefficient PAS of mycelium on the 9-th day were recorded for strains Т-10 (F. fomentarius) and D-140, Р-035, Р-01, Р-105 (P. ostreatus) and on the 12-th day for strains Sc-10 (S. commune), Р-kl, Р-14 (P. ostreatus), Р-er (P. eryngii) і 960 (A. cylindracea). The abovementioned strains are distinguished by the with high level of AOA in the mycelium on certain days of cultivation and can be recommended as producers of antioxidants of fungal origin. 


Al-Maali, G. A., Bisko, N. A., & Ostapchuk, A. M. (2016). The effect of citrate and sulfate of copper on the biomass composition of the medicinal mushroom Trametes versicolor (Polyporales, Polyporaceae). Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 119–123. >>

Asatiani, M. D., Elisashvili, V., Songulashvil, G., Reznick, A. Z., & Wasser, S. P. (2010). Higher basidiomycetes mushrooms as a source of antioxidants. In: M. Rai, G. Kövics (Eds). Progress in Mycology. P. 311–326. >>

Bitto, A., Sell, C., Crowe, E., Lorenzini, A., Malaguti, M., Hrelia, S., & Torres, C. (2010). Stress-induced senescence in human and rodent astrocytes. Experimental Cell Research, 316, 2961–2968. >>

Chang, S. T. (2001). A 40-year journey through bioconversion of lignocellu¬losic wastes to mushrooms and dietary supplements. International Journal of Medicinal Mushrooms, 3, 299–310. >>

Chayka, O. V., & Fedotov, O. V. (2014). Otsinka ekolohichnoho stanu dovkillya z vykorystannyam prooksydantno-antyoksydantnoyi aktyvnosti kul’tur bazydiomitsetiv [The ecology estimation of environment state using prooxidant-antioxidant activity of Basidiomycetes cultures]. Bioresursy i Pryrodokorystuvannya, 6, 5–11 (in Ukrainian).

Cherubini, A., Ruggiero, C., Morand, C., Lattanzio, F., Dell’aquila, G., Zuliani, G., Di Iorio, A., & Andres-Lacueva, C. (2008). Dietary antioxidants as potential pharmacological agents for ischemic stroke. Current Medicinal Chemistry, 15, 1236–1248. >>

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews, 82, 47–95. >>

Dudka, Y. A., Wasser, S. P., & Ellanskaya, Y. A. (2003). Metody eksperi¬mental'noy mikologii [Methods of experimental mycology]. Naukova Dumka, Kyiv (in Russian).

Egorova, A. S., Gessler, N. N., Ryazanova, L. P., Kulakovskaya, T. V., & Belo¬zerskaya, T. A. (2015). Stress resistance mechanisms in the indicator fungi from highly radioactive Chernobyl Zone sites. Mikrobiologiia, 84(2), 152–158. >>

Eriksson, K. E. L., Blanchette, R. A., & Ander, P. (1990). Microbial and enzy¬matic degradation of wood and wood components. Springer-Verlag, Berlin. >>

Fedotov, O. V. (2016). The lipid peroxidation intensity of fungi strains from the orders Agaricales and Polyporales. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 317–323. >>

Fedotov, O. V. (2016). Total antioxidant activity of some Basidiomycetes strains in growth dynamic. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(2), 158–165. >>

Fedotov, O. V., Chayka, O. V., Voloshko, T. E., & Velyhods'ka, A. K. (2012). Kolektsiya kul'tur shapynkovykh hrybiv – osnova mikolohichnykh doslidzhen’ ta stratehiyi zberezhennya bioriznomanittya bazydiomitsetiv [Culture Collection of mushrooms – the basis of mycological research and biodiversity conservation strategies Basidiomycetes]. Visnyk Donets’koho Universytetu, 1, 209–213 (in Ukrainian).

Fruehauf, J. P., & Meyskens, F. L. (2007). Reactive oxygen species: A breath of life or death? Clinical Cancer Research, 13(1), 789–794. >>

Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322. >>

Kapich, A. N. (2010). Oxidizability of unsaturated fatty acids and of a non-phenolic lignin structure in the manganese peroxidase-dependent lipid peroxidation system. Enzyme and Microbial Technology, 46(2), 136–140. >>

Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the fungi. CABI, Wallingford.

Leonowicz, A., Matuszewska, A., & Luterek, J. (1999). Biodegradation of lignin by white rot fungi. Fungal Genetics and Biology, 27, 175–185. >>

Pham-Huy, L. A., He, H., & Pham-Huyc, C. (2008). Free radicals, antioxidants in disease and health. International Journal of Biomedical Science, 4, 89–96.

Prisedskiy, Y. G. (1999). Statystychna obrobka rezulʹtativ biolohichnykh eksperymentiv [Statistical processing of biological experiments results]. Kassіopeya, Donetsk (in Ukrainian).

Syrchin, S. A., & Grodzinskaya, A. A. (2015). Evaluation of antioxidant activity of some wild macromycetes. Ukrainian Botanical Journal, 72(3), 257–260 (in Ukrainian). >>

Velygodska, A. K., & Fedotov, O. V. (2016). The production and analysis of carotenoid preparations from some strains of xylotrophic Basidiomycetes. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(2), 290–294. >>

Voloshko, T. E., & Fedotov, O. V. (2011). Skryninh shtamiv bazydiomitsetiv za aktyvnistyu antyoksydantnykh oksydoreduktaz [Screening of basidiomy¬cetes strains on the antioxidant activity of oxidoreductases]. Microbiology and Biotechnology, 16, 69–81 (in Ukrainian).

Wasser, S. P. (2010). Medicinal mushroom science: History, current status, future trends, and unsolved problems. International Journal of Medicinal Mushrooms, 12(1), 1–16. >>

Wasser, S. P. (2011). Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Applied Microbiology and Biotechnology, 89, 1323–1332. >>

Winquist, E., Moilanen, U., & Mettala, A. (2008). Production of lignin modifying enzymes on industrial waste material by solid-state cultivation of fungi. Biochemical Engineering Journal, 42, 128–132. >>

How to Cite
Fedotov, O. V. (2017). Condition of the prooxidant-antioxidant system of some strains of Basidiomycetes. Regulatory Mechanisms in Biosystems, 8(1), 77-83.