White blood cells of peripheral blood with ConA-positive glycotopes in patients with chronic leukemia

  • G. S. Maslak State Institution “Dnipropetrovsk Medical Academy”
Keywords: ConA, monocytes, granulocytes, polycythemia vera, chronic lymphocytic leukemia


141 Tumor growth progression of blood cells occurs due to changes in their genetic apparatus, which affects not only the cells morphological characteristics, but also their functional activity which to a greater extent depends on the membrane surface structures, a significant part of which is of glycoprotein nature. Complex type N-glycans are components of surface glycoproteins in the most of leukocytes. Thus, the study of changes in carbohydrate determinants of glycoproteins on the surface of leucocytes in tumorigenesis can help to reveal the mechanisms of this process. The aim of our study was to investigate the monocytes and granulocytes cytoplasmic membrane N-glycosylation in patients with chronic leukemia. The object of the study were blood cells of patients with chronic lymphocytic leukemia (n = 12) and polycythemia vera (n = 15) aged 58–66 years. Healthy hematologic volunteers (n = 15) aged 55 to 65 years were in the control group. N-glycan exposure on monocytes and granulocytes was investigated by flow cytometer Beckman Сoulter EPICS with Canavalia ensiformis lectin – Con A conjugated with fluorescent labels. The number of dead cells was monitored by means of binding them with propidium iodide. The result has been analyzed with FC Express. According to our data, levels of ConA-positive monocytes and granulocytes were 9,9 ± 1,0% and 32,7 ± 3,2%, respectively, in peripheral blood of healthy persons. The level of ConA-positive monocytes decreased to 31,0 ± 2,3% and the number of ConA-binding granulocytes increased to 66,7 ± 3,8% in patients with chronic lymphocytic leukemia compared with the norm. The number of ConA-positive monocytes decreased 3.3 times, and the level of granulocytes interacting with Canavalia ensiformis lectin slightly increased relative to control in polycythemia vera patients. There is significant increase in Con A-positive epitopes on granulocytes in patients with chronic lymphocytic leukemia and polycythemia vera compared with the control group, and absence of any difference in Con A-positive epitopes on monocytes. 100 times increase of the number of ConA-binding glycotopes is observed on the surface of granulocytes in peripheral blood of patients with polycythemia vera, and 3,3 times increase in patients with chronic lymphocytic leukemia, which may serve as an additional marker for the diagnosing these diseases.


Abramenko, I.V., Kryachok, Y.A., 2012. Vzaimodejstvie lejkemicheskih kletok s mikrookruzheniem pri hronicheskom limfolejkoze: Novye aspekty patogeneza i targetnoj terapii [Interaction of leukemic cells with the microenvironment in chronic lymphocytic leukemia: New aspects of pathogenesis and targeted therapies]. Oncohematol. 5(1), 219 (in Ukrainian).

Astrof, S., Sophie, A., Hynes, R.O., 2009. Fibronectins in vascular morphogenesis. Angiogenesis (2), 165–175. >> doi: 10.1007/s10456-009-9136-6

Chambers, A.F., Groom, A.C., MacDonald, I.C., 2002. Dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2(8), 563–572. >> doi: 10.1038/nrc865

Christiansen, M.N., Chik, J., Lee, L., Anugraham M., 2014. Cell surface protein glycosylation in cancer. Proteomics 14(4–5), 525-546. >> doi: 10.1002/pmic.201300387

Di Virgilio, S., 1997. High performance lectin affinity chromatography for fractionation and sequence determination of oligosaccharides. Lectins, Biology, Biochemistry, Clinical Biochemistry 12, 1–17.

Dipak, K.M., Bhattacharyya, L., Koenig, S.H., 1994. Studies of the binding specificity of concanavalin A. Nature of the extended binding site for asparagine-linked carbohydrates. Biochemistry 33(5), 1157–1162.

Glavey, S.V., Huynh, D., Reagan, M.R., 2015. The cancer glycome: Carbohydrates as mediators of metastasis. Blood Rev. 29(4), 269–279. >> doi: 10.1016/j.blre.2015.01.003

Gunnarsson, P., Levander, L., Pahlsson, P., Grenegard, M., 2007. The acute-phase protein alpha 1-acid glycoprotein (AGP) induces rises in cytosolic Ca2+ in neutrophil granulocytes via sialic acid binding immunoglobulin-like lectins (siglecs). FASEB J. 21, 4059–4069.

Häuselmann, I., Borsig, L., 2014. Altered tumor-cell glycosylation promotes metastasis. Front. Oncol. 13(4), 28. >> doi: 10.3389/fonc.2014.00028

Hogg, N., Takacs, L., Palmer, D.G., Selvendran, Y., Allen, C., 1986. The p150, 95 molecule is a marker of human mononuclear phagocytes: Comparison with expression of class II molecules. Eur. J. Immunol. 16, 240–248.

Kostyuk, O.V., Maslak, H.S., Brazaluk, A.Z., 2015. Vliyanie alkiliruyushchej terapii na sialirovannost' membran limfocitov pri hronicheskom limfolejkoze [Effect of alkylazing therapy on lymphocytes sialylation membranes in chronic lymphocytic leukemia]. Laboratory diagnosis. Eastern Europe 1(13), 120–128 (in Russian).

Lapovets, L.E., Swan, G.B., Yastremskaya, O.O., 2013. Vibranі lekcії z laboratornoї medicini. Chastina 1. Gematologіchnі doslіdzhennya [Selected lectures of Laboratory Medicine. Part 1. Hematological study]. 192–193 (in Ukrainian).

Leong, C.F., Raudhawati, O., Cheong, S.K., Sivagengei, K., Hamidah, H.N., 2003. Epithelial membrane antigen (EMA) or MUC1 expression in monocytes and monoblasts. Pathology 35(5), 422–427. >> doi: 10.1080/00313020310001602576

Lewandrowski, U., Moebius, J., Walter, U., Sickmann, A., 2006. Elucidation of N-glycosylation sites on human platelet proteins: A glycoproteomic approach. Mol. Cell. Proteomics 5(2), 226–233. >> doi: 10.1074/mcp.M500324-MCP200

Maslak, G.S., Pasha, N.S., Kulіnіch, A.O., Nіkolaєnko-Kamishova, T.P., Brazaluk, O.Z., Shevtsova, A.І., 2010. Pererozpodіl populyacіj lejkocitіv za ekspresіjeyu fіbronektinu ta al'fa-1-kislogo glіkoproteїnu pri eritremіji [Rearrangement of leukocyte population on α1-acid glycoprotein and fibronectin expression in erythremia]. The Odessa Medical Journal 21(6), 4–5 (in Ukrainian).

Merzaban, J.S., Burdick, M.M., Gadhoum, S.Z., 2011. Analysis of glycoprotein E-selectin ligands on human and mouse marrow cells enriched for hematopoietic stem/progenitor cells. Blood 118(7), 1774–1783. >> doi: 10.1182/blood-2010-11-320705

Oldenborg, P., 2013. CD47: A cell surface glycoprotein which regulates multiple functions of hematopoietic cells in health and disease. ISRN Hematology 5, ID 614619. >> doi: 10.1155/2013/614619

Sanchez, C., Le Treut, T., Baier, C., Sébahoun, G., Costello, R.T., 2015. Distribution of lymphocyte subpopulations in patients with polycythemia vera. Hum. Immunol. 76(6), 414–416. >> doi: 10.1016/j.humimm.2015.03.021

Stelter, F., Pfister, M., Bernheiden, M., Jack, R.S., Bufler, P., Engelmann, H., Schütt, C., 1996. The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. Eur. J. Biochem. 236(2), 457–464.

Stocks, S.C., Ruchaud-Sparagano, M.H., Kerr, M.A., Grunert, F., Haslett, C., Dransfield, I., 1996. CD66: Role in the regulation of neutrophil effector function. Eur. J. Immunol. 26(12), 2924–2932. >> doi 10.1002/eji.1830261218

Stowell, S.R., Ju, T.Z., Cummings, R.D., 2015. Protein glycosylation in cancer. Annu. Rev. Pathol. 10(1), 473–510. >> doi: 10.1146/annurev-pathol-012414-040438

Wedepohl, S., Kaup, M., Riese, S.B., Berger, M., Dernedde, J., Tauber, R., Blanchard, V., 2010. N-glycan analysis of recombinant L-Selectin reveals sulfated GalNAc and GalNAc-GalNAc motifs. J. Proteome Res. 9(7), 3403–3411. >> doi: 10.1021/pr100170c

Xu, Y.X., Liu, L., Caffaro, C.E., Hirschberg, C.B., 2010. Inhibition of Golgi apparatus glycosylation causes endoplasmic reticulum stress and decreased protein synthesis. J. Biol. Chem. 285(32), 24600–24608. >> doi: 10.1074/jbc.M110.134544

Zeya, H.I., Keku, E., Richards, F., Spurr, C.L., 1979. Monocyte and granulocyte defect in chronic lymphocytic leukemia. Am. J. Pathol. 95(1), 43–54.

How to Cite
Maslak, G. S. (2015). White blood cells of peripheral blood with ConA-positive glycotopes in patients with chronic leukemia. Regulatory Mechanisms in Biosystems, 6(2), 141-145. https://doi.org/10.15421/021525