Role of fibronectin under conditions of doxorubicin action
Abstract
There is no standard as to treatment of anthracycline chemotherapy complications. The reduction of cytotoxic drugs toxicity without weakening of their antitumor action remains relevant. The extracellular matrix which key component is fibronectin is present in all tissues and it continuously undergoes controlled remodeling. So, the purpose of our work was to study the level of fibronectin in the experimental model of doxorubicin-induced cardiomyopathy and effects of this cytostatic and its co-administration with antioxidants of different nature.The level of fibronectin was measured by ELISA using monospecific antibodies against fibronectin (Sigma, USA), secondary anti-IgG labeled with horseradish peroxidase (Sigma, USA) and fibronectin standard (Sigma, USA). The study was conducted on Wistar male rats with weight of 210 ± 50 g which were divided into 4 groups by 8 animals in each group: 1 – control, rats receiving saline i/p; 2 – doxorubicin 1 mg/kg i/p once a week during 4 weeks; 3 – doxorubicin by the same scheme plus 1% 2-oxoglutarate in drinking water during 4 weeks;4 – doxorubicin by the same scheme and korvitin injection 30 min before doxorubicin application once a week during 4 weeks. Obtained data indicate the effect of doxorubicin to decrease in index mass heart in 38% of animals compared to control animals; decrease in total protein concentration by 8% (Р < 0,05) and increase of the level of fibronectin by 67% (P < 0,001) in blood plasma of rats and decrease in the level of fibronectin in the heart extract by 19% (Р < 0,05) under development of doxorubicin-induced cardiotoxicity. Increased fibronectin concentration in blood plasma had strong correlation with decreased total protein concentration in blood (r=0,80) and heart extract (r=0,59) in rats with doxorubicin-induced cardiomiophaty indicating the sensitive reaction of fibronectin to development of metabolic disorders under doxorubicin influence.References
Von Au, A., Vasel, M., Kraft, S., Sens, C., Hackl, N., Marx, A., Stroebel, P., Hennenlotter, J., Todenhöfer, T., Stenzl, A., Schott, S., Sinn, H.P., Wetterwald, A., Bermejo, J.L., Cecchini, M.G., Nakchbandi, I.A., 2013. Circulating fibronectin controls tumor growth. Neoplasia 15(8), 925–938. >> doi: 10.1593/neo.13762
Aziz-Seible, R.S., Casey, C.A., 2011. Fibronectin: Functional character and role in alcoholic liver disease. World J. Gastroenterol. 17(20), 482–499. >> doi: 10.3748/wjg.v17.i20.2482
Baklanova, Y.V., Ushakova, G.A., 2013. Toxichni effecti ta biochemichniy control’ naslidkiv antraciklinovoi terapii [Toxic effects and biochemical control of anthracycline therapy consequence]. Archives of Clinical and Experimental Medicine 22(2), 242–248 (in Ukrainian).
Distefano, G., 2009. Molecular pathogenetic mechanisms and new therapeutic perspectives in anthracycline-induced cardiomyopathy. Ital. J. Pediatr. 35(1), 1–8. >> doi: 10.1186/1824-7288-35-37
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.
Dobaczewski, M., Gonzalez-Quesada, C., Frangogiannis, N.G., 2009. The extracellular matrix as a modulator of the inflammatory and reparative response following myocardial infarction. J. Mol. Cell Cardiol. 48(3), 504–511. >> doi: 10.1016/j.yjmcc.2009.07.015
Erturk, A., Cure, E., Ozkurt, Z., Parlack, E., Cure, M.C., 2014. Serum fibronectin levels in acute and chronic viral hepatitis patients Malays. J. Med. Sci. 21(1), 29–36.
Gordienko, Y.A., Baklanova, Y.V., Kovalenko, M.V., Stepchenko, L.M., Shevtsova, A.I., Ushakova, G.A., 2012. Zmini fiziologichnyx ta biochimichnyx pokaznykiv y wchuriv z doxorubicin-indukovanou kardiomiopatieu na tli zastosuvannz preparative z antioxidantnou dieu [Changes of phisiological and biochemical parameters in rats with doxorubicin-induced cardiopathy under influence of substances with antioxidant action]. The Animal Biology 14, 74–79 (in Ukrainian).
Gordienko, Y.A., Shevtsova, A.I., Babets, Y.V., Ushakova, G.A., Kulinich, A.O., 2014. Aktivnist’ tripsinopodibnich enzimiv ta gelatinas u wchuriv z doxorubicinovou cardiomiopatieu [Activity of trypsin-like enzymes and gelatinases in rats with doxorubicin cardiomyopathy]. Ukr. Biochem. J. 86(6), 139–146 (in Ukrainian).
Hemmerle, T., Probst, P., Giovannoni, L., Green, A.J., Meyer, T., Neri, D., 2013. The antibody-based targeted delivery of TNF in combination with doxorubicin eradicates sarcomas in mice and confers protective immunity. Br. J. Cancer. 109(5), 1206–1213. >> doi: 10.1038/bjc.2013.421
Horstmann, S., Kalb, P., Kozio, H., Gardner, H., Wagner, S., 2003. Profiles of matrix metalloproteinases, their inhibitors, and laminin in stroke patients: Influence of different therapies. Stroke 34, 2165–2170.
Kelsh, R., You, R., Horzempa, C., Zheng, M., McKeown-Longo, P.J., 2014. Regulation of the innate immune response by fibronectin: Synergism between the III-1 and EDA domains. Plos One 9(7), 1–11. >> doi: 10.1371/journal.pone.0102974
Konstandin, M.H., Toko, H., Gastelum, G.M., Quijada, P., De La Torre, A., Quintana, M., Collins, B., Din, S., Avitabile, D., Völkers, M., Gude, N., Fässler, R., Sussman, M.A., 2013. Fibronectinis essential for reparative cardiac progenitor cell response after myocardial infarction. Circ. Res. 113(2), 115–125.
Levitan, B.N., Astachin, A.B., 1999. Diagnosticheskoe і prognosticheskoe znachenie plasmennogo fibronektina pri chroniches¬kix diffusnix zabolevaniyax pecheni [The diagnostic and prognostic importance of liver disease chronic diffuse]. Rossiyskiy Gastroenterologicheskiy Zurnal 3, 34–60 (in Russian).
Liu, J., Zeng, L., Zhao, Y., Zhu, B., Ren, W., Wu, C., 2014. Selenium suppresses lipopolysaccharide-induced fibrosis in peritoneal mesothelial cells through inhibition of epithelial-to-mesenchymal transition. Biol. Trace Elem. Res. 161(2), 202–209. >> doi: 10.1007/s12011-014-0091-8
Lockhart, M., Wirrig, E., Phelps, A., Wessels, A., 2011. Extracellular matrix and heart development. Birth Defects Res. A Clin. Mol. Teratol. 91(6), 535–550. >> doi: 10.1002/bdra.20810
Loeser, R.F., 2014. Integrins and chondrocyte-matrix interactions in articular cartilage. Matrix. Biol. 39C, 11–16. >> doi: 10.1016/j.matbio.2014.08.007
Lushnikova, E.L., Nepomnyachix, L.M., Molodich, N.A., Klinnikova, M.G., Molodich, O.P., 2011. Strukturnaya reorganizacia miokarda kris i chislennost’ kardiomiocitov pri deystvii doksorubicina i triterpenoidov [Structural reorganization of the rat myocardium and cardiomyocyte number under influence of doxorubicin and triterpenoids]. Fundamentalniye Issledovaniya 6, 98–102 (in Russian).
Lutay, N.V., Brazluk, A.Z., Peleshenko, A.I., Shevtsova, A.I. 2004. Obchwaya rol’ fibronectina v norme i pri patologii [General organization of fibronectins and their role in norm and pathology]. Biopolym. Cell. 20(5), 402–409.
Michel, J.-B., 2003. Anoikis in the cardiovascular system known and unknown extracellular mediators. Arterioscler. Thromb. Vasc. Biol. 23(12), 2146–2154. >> doi: 10.1161/01.ATV.0000099882.52647.E4
Naci, D., Azreq, E., Chetoui, N., Lauden, L., Sigaux, F., Charron, D., Daccak, R., Aoudjit, F., 2012. α2β1 Integrin promotes chemoresistance against doxorubicin in cancer cells through extracellular signal-regulated kinase (ERK). J. Biol. Chem. 287(21), 17065–17076. >> doi: 10.1074/jbc.M112.349365
Nadashkevich, O.N., 1999. Imunologichni pokazniki u chvorich na sistemnu sklerodermiu [Immunological parameters in patients with systemic sclerosis]. Practychna Medicina 5–6, 22–24 (in Ukrainian).
Phan, T.T., Lim, I.J., Sun, L., Chan, S.Y., Bay, B.H., 2003. Quercetin inhibits fibronectin production by keloid-derived fibroblasts. Implication for the treatment of excessive scars. J. Dermatol. Sci. 33(3), 192–194. >> doi: 10.1016/j.jdermsci.2003.08.008
Rutnam, Z.J., Wight, T.N., Yang, B.B., 2013. miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol. 32(2), 74–85. >> doi: 10.1016/j.matbio.2012.11.003
Schwarzbauerand, J.E., De Simone, D.W., 2011. Fibronectins, their fibrillogenesis, and in vivo functions. Cold Spring Harb. Perspect. Biol. 3(7), 1–19.
Strigun, A., Wahrheit, J., Niklas, J., Heinzle, E., Noor, F., 2012. Doxorubicin increases oxidative metabolism in HL-1 cardiomyocytes as shown by 13C metabolic flux analysis. Toxicol. Sci. 125(2), 595–606. >> doi: 10.1093/toxsci/kfr298
Tamura, K., Chen, Y.E., Lopez-Ilasaca, M., Daviet, L., Tamura, N., Ishigami, T., Akishita, M., Takasaki, I., Tokita, Y., Pratt, R.E., Horiuchi, M., Dzau, V.J., Umemura, S., 2000. Molecular mechanism of fibronectin gene cctivation by cyclic stretch in vascular smooth muscle cells. J. Biol. Chem. 275(44), 34619–34627.
Tiwari, S., Mishra, M., Jadhav, A., Gerger, C., Lee, P., Weber, L., 2013. The risk of heart failure and cardiometabolic complications in obesity may be masked by an apparent healthy status of normal blood glucose. Oxid. Med. Cell Longev. 2013, 1–16. >> doi: 10.1155/2013/253657
Wang, J., Karra, R., Dickson, A.L., Poss, K.D., 2013. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev. Biol. 382(2), 427–435. >> doi: 10.1016/j.ydbio.2013.08.012
Xie, L., Terrand, J., Xu, B., Tsaprailis, G., Boyer, J.,Chen, Q.M., 2010. Cystatin C increases in cardiac injury: A role in extracellular matrix protein modulation. Cardiovasc. Res. 87(4), 628–635. >> doi: 10.1093/cvr/cvq138
Yan, Y., Feng, Y., Li, W., Ping Che, J.I., 2014. Protective effects of quercetin and hyperoside on renal fibrosis in rats with unilateral ureteral obstruction. Exp. Ther. Med. 8, 727–730. >> doi: 10.3892/etm.2014.1841
Zhang, Y., Shi, J., Li, Y., Wei, L., 2009. Cardiomyocyte death in doxorubicin-induced cardiotoxicity. Arch. Immunol. Ther. Exp. 57(6), 435–445. >> doi: 10.1007/s00005-009-0051-8
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons «Attribution» 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.