Serum clinical biochemical markers of Hy-Line W-36 laying hens under the influence of increased stocking densities in cages of multilevel batteries

  • Y. V. Osadcha The National University of Life and Environmental Sciences of Ukraine
  • M. I. Sakhatsky The National University of Life and Environmental Sciences of Ukraine
  • R. O. Kulibaba The National University of Life and Environmental Sciences of Ukraine
Keywords: laying hens; stocking density; chronic stress; glucose; creatinine; enzyme activity

Abstract

Today, the organism of hens is constantly exposed to numerous technological stressors in the conditions of industrial poultry farming, the least studied of which are long-term, which can cause the development of chronic stress. One of such stressors is the increased stocking density of hens, which is also a way of saving resources in egg poultry and is often used by producers to obtain more eggs per 1 m2 of poultry area. The aim of this study was to examine the effect of overcrowding, as a factor of chronic stress development, on the body of hens of a modern high-performance cross, which is necessary to select the best ways to keep them. Four groups of hens were formed for this purpose, which were kept at different stocking densities, according to European standards, Ukrainian standards and with increasing overcrowding. In this way, the gradually increasing intensity of the technological stressor was modeled. Long-term keeping of laying hens at high stocking density did not affect the content in the serum of total protein, albumin, urea and cholesterol, which were within the physiological norm. It was found that the increase in the stocking density of hens to Ukrainian standards, compared to the European, was accompanied by an increase in the activity of lactate dehydrogenase in the serum of their blood. With an increase in stocking density above European and Ukrainian standards, namely to 25.3 birds/m2, there was an increase in the activity of three enzymes – lactate dehydrogenase, aspartate aminotransferase and gamma-glutamyltransferase. It is proved that further overcompaction of hens to 26.7 birds/m2 is accompanied by an increase in serum glucose, creatinine, as well as a decrease in the ratio of calcium and phosphorus, which was confirmed by an increase in alkaline phosphatase activity. Also, increased activity of aspartate aminotransferase, lactate dehydrogenase and gamma-glutamyltransferase was observed. Thus, the main effects of chronic stress caused by prolonged keeping of hens at high stocking densities are reflected in the biochemical parameters of their serum, namely in the increase of glucose, creatinine, enzyme activity, as well as the violation of the ratio of calcium and phosphorus.

References

Abo Ghanima, M. M., Abd El-Hack, M. E., Taha, A. E., Tufarelli, V., Laudadio, V., & Naiel, M. A. (2020). Assessment of stocking rate and housing system on performance, carcass traits, blood indices, and meat quality of French Pekin ducks. Agriculture, 10(7), 273.

Abudabos, A. M., Samara, E. M., Hussein, E. O., Al-Ghadi, M. А. Q., & Al-Atiyat, R. M. (2013). Impacts of stocking density on the performance and welfare of broiler chickens. Italian Journal of Animal Science, 12, 66–71.

Al-Bustany, Z., Al-Athariandy, A. K., & Abdul-Hassan, A. (1998). Plasma alkaline phosphatase and production traits in laying hens as inuenced by dietary protein, strain and agе. British Poultry Science, 39, 568–571.

Bedanova, I., Voslarova, E., Chloupek, P., Pistekova, V., Suchy, P., Blahova, J., Dobsikova, R., & Vecerek, V. (2007). Stress in broilers resulting from shackling. Poultry Science, 86(6), 1065–1069.

Bueno, J. P., Nascimento, M. R., Martins, J., Marchini, C. F., Gotardo, L. R., Sousa, G. R., Mundim, A. V., Guimarães, E., & Rinaldi, F. P. (2017). Effect of age and cyclical heat stress on the serum biochemical profile of broiler chickens. Semina-Ciencias Agrarias, 38(3), 1383–1392.

Campbell, T. W. (2004). Clinical chemistry of birds. In: Thrall, M. A., Baker, D. C., Campbell, T. W., DeNicola, D., Fettman, M. J., Lassen, E. D., Rebar, A., & Weiser, G. Veterinary hematology and clinical chemistry. Lippincott Williams & Wilkins, Philadelphia.

Capitelli, R., & Crosta, L. (2013). Overview of psittacine blood analysis and comparative retrospective study of clinical diagnosis, hematology and blood chemistry in selected psittacine species. Veterinary Clinics of North America: Exotic Animal Practice, 16(1), 71–120.

Downing, J. (2012). Оn-invasive assessment of stress in commercial housing systems. Australian Egg Corporation Limited, North Sydney.

El-Lethey, H., Aerni, V., Jungi, T., & Wechsler, B. (2000). Stress and feather pecking in laying hens in relation to housing conditions. British Poultry Science, 41(1), 22–28.

Ericsson, M., Henriksen, R., Bélteky, J., Sundman, A. S., Shionoya, K., & Jensen, P. (2016). Long-term and transgenerational effects of stress experienced during different life phases in chickens (Gallus gallus). PloS One, 11(4), e0153879.

 

428

Everds, N. E., Snyder, P. W., Bailey, K. L., Bolon, B., Creasy, D. M., Foley, G. L., Rosol, T. J., & Sellers, T. (2013). Interpreting stressresponses during routine toxicity studies: A review of the biology, impact, and assessment. Toxicologic Pathology, 41, 560–614.

 

Goel, A. (2021). Heat stress management in poultry. Journal of Animal Physiology and Animal Nutrition, in print.

González, F. H. D., & Silva, S. C. (2006). Introdução à bioquímica clínica veterinária. 2nd ed. Universidade Federal do Rio Grande do Sul, Porto Alegre.

Gorelik, O., Harlap, S., Derkho, M., Dolmatova, I., Eliseenkova, M., Vinogradova, N., Knysh, I., Ermolov, S., Burkov, P., Lopаeva, N., Bezhinar, T., Ali Shariati, M., & Rebezov, M. (2020). Influence of transport stress on the adaptation potential of chickens. Ukrainian Journal of Ecology, 10(2), 260–263.

Greene, S. J., Gheorghiade, M., Vaduganathan, M., Ambrosy, A. P., Mentz, R. J., Subacius, H., Maggioni, A. P., Nodari, S., Konstam, M. A., Butler, J., & Filippatos, G. (2013). Everest trial investigators. Haemoconcentration, renal function, and post-discharge outcomes among patients hospitalized for heart failure with reduced ejection fraction: Insights from the Everest trial. European Journal of Heart Failure, 15(12), 1401–1411.

Guo, Y., Song, Z., Jiao, H., Song, Q., & Lin, H. (2012). The effect of group size and stocking density on the welfare and performance of hens housed in furnished cages during summer. Animal Welfare Journal, 21, 41–49.

Gupta, S. K., Behera, K., Pradhan, C. R., Acharya, A. P., Sethy, K., Behera, D., Lone1, S. A., & Shinde, K. P. (2017). Influence of stocking density on the performance, carcass characteristics, hemato-biochemical indices of Vanaraja chickens. Indian Journal of Animal Research, 51(5), 939–943.

Hall, J. M., Witter, A. R., Racine, R. R., Berg, R. E., Podawiltz, A., Jones, H., & Mummert, M. E. (2014). Chronic psychological stress suppresses contact hypersensitivity: Potential roles of dysregulated cell trafficking and decreased IFN-γ production. Brain, Behavior and Immunity, 36, 156–164.

Hedlund, L., & Jensen, P. (2021). Incubation and hatching conditions of laying hen chicks explain a large part of the stress effects from commercial large-scale hatcheries. Poultry Science, 100(1), 1–8.

Hedlund, L., Whittle, R., & Jensen, P. (2019). Effects of commercial hatchery processing on short- and long-term stress responses in laying hens. Scientific Reports, 9, 1–10.

Infante, M., Armani, A., Mammi, C., Fabbri, A., & Caprio, M. (2017). Impact of adrenal steroids on regulation of adipose tissue. Comprehensive Physiology, 7(4), 1425–1447.

Jiang, W., Li, Y., Sun, J., Li, L., Li, J. W., Zhang, C., Huang, C., Yang, J., Kong, G. Y., & Li, Z. F. (2017). Spleen contributes to restraint stress induced changes in blood leukocytes distribution. Scientific Reports, 7, 6501.

Kang, H. K., Park, S. B., Jeon, J. J., Kim, H. S., Kim, C. H., Hong, E., & Kim, C. H. (2018). Effect of stocking density on laying performance, egg quality and blood parameters of Hy-Line Brown laying hens in an aviary system. European Poultry Science, 82.

Kang, H. K., Park, S. B., Kim, H. S., & Kim, C. H. (2016). Effects of stock density on the laying performance, blood parameter, corticosterone, litter quality, gas emission and bone mineral density of laying hens in floor pens. Poultry Science, 95, 2764–2770.

Koronowicz, A. A., Banks, P., Szymczyk, B., Leszczyńska, T., Master, A., Piasna, E., Szczepański, W., Domagała, D., Kopeć, A., Piątkowska, E., & Laidler, P. (2016). Dietary conjugated linoleic acid affects blood parameters, liver morphology and expression of selected hepatic genes in laying hens. British Poultry Science, 57(5), 663–673.

Kraus, A., Zita, L., Krunt, O., Härtlová, H., & Chmelíková, E. (2021). Determination of selected biochemical parameters in blood serum and egg quality of Czech and Slovak native hens depending on the housing system and hen age. Poultry Science, 100(2), 1142–1153.

Kudair, I. M., & Al-hussary, N. A. J. (2010). Effect of vaccination on some biochemical parameters in broiler chickens. Iraqi Journal of Veterinary Sciences, 24, 59–64.

Laganá, C., Ribeiro, A. M. L., González, F. H. D., Lacerda, L. A., Kratz, L. R., & Barboza, P. R. (2007). Niveis dietéticos de proteina e gordura e parâmetros bioquimicos, hematológicos e empenamento em frangos de corte estressados pelo calor. Revista Brasileira de Zootecnia, 36(6), 1783–1790.

Lara, L. J., & Rostagno, M. H. (2013). Impact of heat stress on poultry production. Animals, 3(2), 356–369.

Liew, P. X., & Kubes, P. (2019). The neutrophil’s role during health and disease. Physiological Reviews, 99(2), 1223–1248.

Lin, H., Decuypere, E., & Buyse, J. (2006). Acute heat stress induces oxidative stress in broiler chickens. Comparative Biochemistry and Physiology, 144, 11–17.

Mert, N. I., & Yildirim, B. A. (2016). Biochemical parameters and histopathological findings in the forced molt laying hens. Brazilian Journal of Poultry Science, 18(4), 711–718.

Mikami, T., Sumida, S., Ishibashi, Y., & Ohta, S. (2004). Endurance exercise training inhibits activity of plasma GOT and liver caspase-3 of mice [correction of rats] exposed to stress by induction of heat shock protein 70. Journal of Applied Physiology, 96, 1776–1781.

Mollahosseini, M., Daneshzad, E., Rahimi, M. H., Yekaninejad, M. S., Maghbooli, Z., & Mirzaei, K. (2017). The association between fruit and vegetable intake and liver enzymes (aspartate and alanine transaminases) in Tehran, Iran. Ethiopian Journal of Health Sciences, 27(4), 401–410.

Nasonov, I. V., Buyko, N. V., Lizun, R. P., Volyihina, V. E., Zaharik, N. V., & Yakubovskiy, S. M. (2014). Metodicheskie rekomendatsii po gematologicheskim i biohimicheskim issledovaniyam u kur sovremennyih krossov [Methodological recommendations on haematological and biochemical researches on modern chicked crosses]. S. N. Vyshelessky Institute of Experimental Veterinary Medicine, Minsk (in Russian).

Nwaigwe, C. U., Ihedioha, J. I., Shoyinka, S. V., & Nwaigwe, C. O. (2020). Evaluation of the hematological and clinical biochemical markers of stress in broiler chickens. Veterinary World, 13(10), 2294–2300.

Odihambo Mumma, J., Thaxton, J. P., Vizzier-Thaxton, Y., & Dodson, W. L. (2006). Physiological stress in laying hens. Poultry Science, 85(4), 761–769.

Olubodun, J., Zulkifli, I., Hair-Bejo, M., Kasim, A., & Soleimani, A. F. (2015). Physiological response of glutamine and glutamic acid supplemented broiler chickens to heat stress. European Poultry Science, 79, 1–12.

Onbaşılar, E. E., Erdem, E., Ünal, N., Tunç, A. S., Kocakaya, A., & Yaranoğlu, B. (2016). Comparison of liver and bone health of two laying hen strains kept in different cage systems. European Poultry Science, 80.

Park, B.-S., Um, K.-H., Park, S.-O., & Zammit, V. A. (2018). Effect of stocking density on behavioral traits, blood biochemical parameters and immune responses in meat ducks exposed to heat stress. Archives Animal Breeding, 61, 425–432.

Pavlík, A., Pokludová, M., Zapletal, D., & Jelínek, P. (2007). Effects of housing systems on biochemical indicators of blood plasma in laying hens. Acta Veterinaria Brno, 76, 339–347.

Puvadolpirod, S., & Thaxton, J. P. (2000). Model of physiological stress in chickens 1. Response parameters. Poultry Science, 79(3), 363–369.

Radin, M. J. (2003). Interpretação de perfis bioquímicos. In: Fenner, W. R. Consulta rápida em clínica veterinária. Editora Guanabara, Rio de Janeiro.

Rajman, M., Juráni, M., Lamosová, D., Mácajová, M., Sedlacková, M., Kost'ál, L., Jezová, D., & Výboh, P. (2006). The effects of feed restriction on plasma biochemistry in growing meat type chickens (Gallus gallus). Comparative Biochemistry and Physiology, 145(3), 363–371.

Ruiz-Jimenez, F., Gruber, E., Correa, M., & Crespo, R. (2021). Comparison of portable and conventional laboratory analyzers for biochemical tests in chickens. Poultry Science, 100(2), 746–754.

Sakhatsky, M., Osadcha, Y., & Kuchmistov, V. (2020). Reaction of the reproductive system of hens to the chronic stressor. Ukrainian Journal of Ecology, 10(4), 6–11.

Sandercock, D. A., Hunter, R. R., Mitchell, M. A., & Hocking, P. M. (2006). Thermoregulatory capacity and muscle membrane integrity are compromised in broilers compared with layers at the same age or body weight. British Poultry Science, 47, 322–329.

Scanes, C. G. (2016). Biology of stress in poultry with emphasis on glucocorticoids and the heterophil to lymphocyte ratio. Poultry Science, 95(9), 2208–2215.

Selye, H. (1979). Stress without distress. Progres, Moscow.

Shevchuk, M., Stoyanovskyy, V., & Kolomiiets, I. (2018). Technological stress in poultry. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series Veterinary Sciences, 20(88), 63–68.

Sloan, E. K., Priceman, S. J., Cox, B. F., Yu, S., Pimentel, M. A., Tangkanangnukul, V., Arevalo, J. M., Morizono, K., Karanikolas, B. D., Wu, L., Sood, A. K., & Cole, S. W. (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer research, 70(18), 7042–7052.

Stoianovskyi, V. H., Kolomiiets, I. A., Harmata, L. S., & Kamratska, O. I. (2018). Zminy morfofunktsionalnoho stanu orhaniv endokrynnoji ta imunnoji system perepeliv promyslovoho vyroshchuvannia za diji stresu [Changes in the morphofunctional state of the endocrine and immune systems of quails in industrial cultivation under stress]. Physiological Journal, 64(1), 25–33 (in Ukrainian).

Virden, W., & Kidd, M. (2009). Physiological stress in broilers: Ramifications on nutrient digestibility and responses. The Journal of Applied Poultry Research, 18, 338–347.

Weimer, S. L., Wideman, R. F., Scanes, C. G., Mauromoustakos, A., Christensen, K. D., & Vizzier Thaxton, Y. (2018). An evaluation of methods for measuringstress in broiler chickens. Poultry Science, 97(10), 3381–3389.

Xie, J., Tang, L., Lu, L., Zhang, L., Lin, X., Liu, H.-C., Odle, J., & Luo, X. (2015). Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poultry Science, 94(7), 1635–1644.

Zhang, J., Li, Q., Wu, Y., Wang, D., Xu, L., Zhang, Y., Wang, S., Wang, T., Liu, F., Zaky, M. Y., Hou, S., Liu, S., Zou, K., Lei, H., Zou, L., Zhang, Y., & Liu, H. (2019). Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer. Cell Commun Signal, 17, 15.

Published
2021-07-21
How to Cite
Osadcha, Y. V., Sakhatsky, M. I., & Kulibaba, R. O. (2021). Serum clinical biochemical markers of Hy-Line W-36 laying hens under the influence of increased stocking densities in cages of multilevel batteries . Regulatory Mechanisms in Biosystems, 12(3), 425-429. https://doi.org/10.15421/022158