Effects of antihypertensive treatment on systemic inflammation, oxidative stress and proinflammatory cytokine levels

  • T. V. Ashcheulova Kharkiv National Medical University
  • N. N. Gerasimchuk Kharkiv National Medical University
  • O. N. Kovalyova Kharkiv National Medical University
  • K. N. Kompaniiets Kharkiv National Medical University
  • O. V. Honchar Kharkiv National Medical University
Keywords: 8-iso-PgF2α; tumour necrosis factor-α; type I soluble receptor; C-reactive protein; blood pressure

Abstract

Hypertension in its origin is a heterogeneous and multisystemic disease. Evaluation of oxidative stress activity based on the level of 8-iso-PgF2α, proinflammatory activity based on tumour necrosis factor-α, its type I soluble receptor, and C-reactive protein levels is relevant for further understanding of pathogenesis of hypertension and improvement of the early diagnostics of heart failure. 186 hypertensive patients were observed during a 2-months course of treatment, aged 30 to 65 years. Serum levels of 8-iso-PgF2α (n = 34), tumour necrosis factor-α and its type I soluble receptor were determined by ELISA before and after course of treatment. C-reactive protein level was determined by biochemical method. The control group included 16 clinically healthy individuals, aged 27 to 55 years. Hypertensive patients enrolled into the study were randomized into three groups that received different protocols of combined anti-hypertensive therapy: I clinical group – а combination of bisoprolol and indapamid, II – а combination of lacidipine and candesartan, III – а combination of fosinopril sodium and hydrochlorothiazide. On the background of combined antihypertensive therapy, we observed favourable dynamics of 8-iso-PgF2α, tumour necrosis factor-α and its type I soluble receptor, and C-reactive protein levels. Taking into account the insignificance of the correlations revealed, a one-factor dispersion analysis was applied which allowed us to determine the influence of the grade and duration of hypertension on the dynamics of the studied parameters. It has been found that the grade of hypertension is related to an increase in TNF-α and 8-iso-PgF2α serum levels, but not in TNF-α type I soluble receptor, and the duration of hypertension is related to an increase in C-reactive protein, TNF-α and its type I soluble receptor levels, with no relation to the level of 8-iso-PgF2α. Thus, oxidative stress possibly promotes the activation of potentially damaging immune mechanisms mediated by proinflammatory cytokines, nonspecific inflammation and drives the further progression of lesions in the target organs.

References

Ageev, F. T., & Mareev, V. U. (2000). Fozinopril v lechenii serdechno-sosudistyh zabolevanij [Fozinopril in the treatment of cardiovascular diseases]. Russkij Medicinskij Zhurnal, 2, 56–61 (in Russian).

Allison, S. J. (2016). Oxidative stress and immune activation in hypertension. Nature Reviews Nephrology, 12(1), 4–8.

Azra, M., & Feely, J. (2005). Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension, 46, 1118–1122.

Bautista, L. E., Lopez-Jaramillo, P., Vera, L. M., Casas, J. P., Otero, A. P., & Guaracao, A. I. (2001). Is C-reactive protein an independent risk factor for essential hypertension? Journal of Hypertension, 19(5), 857–861.

Bautista, L. E., Vera, L. M., Arenas, I. A., & Gamarra, G. (2005). Independent association between inflammatory markers (C-reactive protein, interleukin-6, and TNF-a) and essential hypertension. Journal of Human Hypertension, 19, 149–154.

Cracowski, J. L., Stance-Labesque, F., & Bessard, G. (2000). Isoprostanes: New markers of oxidative stress. Fundamental and clinical data. La Revue de Médecine Interne, 21(3), 304–307.

Czerska, M., Zieliński, M., & Gromadzińska, J. (2016). Isoprostanes – A novel major group of oxidative stress markers. International Journal of Occupational Medicine and Environmental Health, 29(2), 179–190.

Davi, G., Alessandrini, P., Mezzetti, A., Minotti, G., Bucciarelli, T., Costantini, F., Cipollone, F., Bittolo. B., Ciabattoni, G., & Patrono, C. (1997). In vivo formation of 8-epi-PGF2 is increased in hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 17, 3230–3235.

Davi, G., Ciabattoni, G., Consoli, A., Mezzetti, A., Falco, A., Santarone, S., Pennese, E., Vitacolonna, E., Bucciarelli, T., Costantini, G. F., Capani, F., & Patrono, C. (1999). In vivo formation of 8-iso-prostaglandin F2 and platelet activation in diabetes mellitus: Effects of improved metabolic control and vitamin E supplementation. Circulation, 99(2), 224–229.

Dzjak, G. V., & Kolesnik, T. V. (2005). Jeffektivnost' fozinoprila v lechenii arterial'noj gipertenzii [Effectiveness of fosinopril in the treatment of arterial hypertension]. Ukrainskij Kardiologicheskij Zhurnal, 2, 30–35 (in Russian).

Goldhaber, L., Kim, K. H., Natterson, P. D., Lawrence, T., Yang, P., & Weiss, J. N. (1996). Effects of TNF-alpha on [Ca2+] I and contractility in isolated adult rabbit ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology, 271, 1449–1455.

Grainger, D. J. (2007). TGF-β and atherosclerosis in man. Cardiovascular Research, 74(2), 213–222.

Grander, D. N., Vowinkel, T., & Petnehazy, T. (2004). Modulation of the inflammatory response in cardiovascular disease. Hypertension, 43(5), 924–931.

Greco, A., Mingetti, L., & Levi, G. (2000). Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochemical Research, 25(9–10), 1357–1364.

Greene, E. L., Verlarde, V., & Jaffa, A. A. (2000). Role of reactive oxygen species in bradykinin-induced mitoden-activated proteinkinase and C-FOS induction in vascular. Hypertension, 35(4), 942–947.

Haider, N., Narula, N., & Narula, J. (2002). Apoptosis in heart failure represents programmed cell survival, not death, of cardiomyocytes and likelihood of reverse remodeling. Journal Cardiac Failure, 8(6), 512–517.

Herbette, L. G. (1995). The interaction of lacidipine with biological membranes: The molecular of calcium antagonists. Reviews in Contemporary Pharmacotherapy, 6(1), 8–12.

Karpov, U. A. (2001). Fozinopril pri lechenii arterial’noj gipertenzii (FLAG): Rossijskaja programma ocenki prakticheskoj dostizhimosti celevyh urovnej arterial’nogo davlenija [Fozinopril in the treatment of hypertension (FLAG): Russian program for assessing the practical achievement of target blood pressure levels] Russkij Medicinskij Zhurnal, 9(10), 14–17 (in Russian).

Kovaljova, O. N., & Ashcheulova, T. V. (2002). Faktor nekroza opuholej-α. Klinicheskoe issledovanie aktivnosti pri arterial’noj gipertenzii [Tumor necrosis factor-α. Clinical trial of activity at arterial hypertension]. Іmunologіja ta Alergologіja, 4, 64–66 (in Russian).

Kovaljova, O. N., Ashcheulova, T. V., Herasymchuk, N. N., & Safargalina-Kornilova, N. A. (2015). Rol’ oksidativnogo stressa v stanovlenii i progressirovanii gipertonicheskoj bolezni [Role of oxidative stress in the formation and progression of hypertensive disease]. Nauchnye Vedomosti Belgorodskogo Gosudarstvennogo Universiteta Medicina Farmacija, 201, 5–10 (in Russian).

Kovaljova, O. N., Belovol, A. N., & Zaika, M. V. (2005). Rol’ oksidativnogo stressa v kardiovaskuljarnoj patologii [The role of oxidative stress in cardiovascular disease.] Zhurnal Akademii Medicinskih Nauk Ukrainy, 11(4), 660–670 (in Russian).

Lawson, J. A., Rokach, J., & FitzGerald, G. A. (1999). Isoprostanes: Formation, analysis and use as indices of lipid peroxidation in vivo. Journal of Biological Chemistry, 274 (35), 24441–24444.

Li, Y. Y., Feng, Y. Q., Kadokami, T., Mc Tiernan, C. F., Draviam, R., Watkins, S. C., & Feldman, A. M. (2000). Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor α can be modulated by anti-tumor necrosis factor α therapy. Proceedings of the National Academy of Sciences, 97(23), 12746–12751.

Mahmud, A., & Feel, J. (2005). Arterial stiffness is related to systemic inflammation in essential hypertension. Hypertension, 46(5), 1118–1122.

Mel’nikov, I. S., Kozlov, S. G., Chumachenko, P. V., Saburova, O. S., Guseva, O. A., Prokof’eva, L. V., & Gabbasov, Z. A. (2019). Monomernyj C-reaktivnyj belok i lokal’naja vospalitel’naja reakcija v stenke koronarnyh arterij u bol’nyh stabil’noj ishemicheskoj bolezn’ju serdca [Monomeric C-reactive protein and local inflammatory reaction in the wall of the coronary arteries in patients with stable coronary artery disease]. Russian Journal of Cardiology, 24(5), 56–61 (in Russian).

Mel’nikov, I. S., Kozlov, S. G., Saburova, O. S., Avtaeva, J. N., Prokof'eva, L.V., & Gabbasov, Z. A. (2020). Sovremennoe polozhenie o roli monomernogo S-reaktivnogo belka v patologii sosudov i aterotromboze [Current position on the role of monomeric C-reactive protein in vascular pathology and atherothrombosis]. Current Pharmaceutical Design, 26, 37–43 (in Russian).

Morrow, J. D., Frei, B., Longmire, A. W., Gaziano, M. J., Lynch, S. M., Shyr, Y., Strauss, W. E., Oates, J. A., & Roberts, L. J. (1995). Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as cause of oxidative damage. New England Journal of Medicine, 332, 1198–1203.

Onat, A., Can, G., & Hergenç, G. (2008). Serum C-reactive protein is an independent risk factor predicting cardiometabolic risk. Metabolism, 57(2), 207–214.

Preobrazhenskij, D. V., Savchenko, M. V., Kiktev, V. G., & Sidorenko, B. A. (2000). Fozinopril-pervyj predstavitel’ novogo pokolenija ingibitorov angiotenzinprevrashhajushhego fermenta [Fosinopril is the first representative of a new generation of angiotensin-converting enzyme inhibitors]. Kardiologija, 5, 75–82 (in Russian).

Simbirtsev, A. S. (2013). Czitokiny v patogeneze infekczionnykh i neinfekczionnykh zabolevanij cheloveka [Сytokines in the pathogenesis of infectious and noninfectious human diseases]. Meditsinskii Akademicheskii Zhurnal, 13(3), 18–41 (in Russian).

Sirenko, J. N., & Rekovec, O. L. (2005). Rol’ fozinoprila v lechenii arterial’noj gipertenzii [Role of fosinopril in treatment arterial hypertension]. Ukrainskij Kardiologicheskij Zhurnal, 2, 5–15 (in Russian).

Sproston, N. R., & Ashworth, J. J. (2018). Role of C-reactive protein at sites of inflammation and infection. Frontiers in Immunology, 9, 754.

Svishchenko, Y. P. (2002). Antyatyrohenna diia lytsydypinu: Doslidzhennia ELSA (European Lacidipine Study on Atherosclerosis) [Anti-atherogenic effect of lacidipine: Study ELSA (European Lacidipine Study on Atherosclerosis)]. Medytsyna Svitu, 7, 24–29 (in Ukrainian).

Vasan, R. S. (2006). Biomarkers of cardiovascular disease: Molecular basis and practical considerations. Circulation, 113(19), 2335–2362.

Published
2020-11-11
How to Cite
Ashcheulova, T. V., Gerasimchuk, N. N., Kovalyova, O. N., Kompaniiets, K. N., & Honchar, O. V. (2020). Effects of antihypertensive treatment on systemic inflammation, oxidative stress and proinflammatory cytokine levels . Regulatory Mechanisms in Biosystems, 11(4), 536-541. https://doi.org/10.15421/022082