The impact of certain flavourings and preservatives on the survivability of eggs of Ascaris suum and Trichuris suis

Keywords: nematodes of pigs; flavourings; preservatives; survivability of eggs.

Abstract

The article describes a laboratory study of nematocidal properties of flavourings with antibacterial effect against Ascaris suum (Goeze, 1782) and Trichuris suis Schrank, 1788. In the experiments, eight concentrations of food additives with antibacterial properties were used: cinnamaldehyde, benzoic acid, formic acid, linalool, citral, β-ionone. Minimum LC50 value for eggs of A. suum was observed while using cinnamaldehyde and benzoic acid – 1.62 ± 0.37% and 1.69 ± 0.14%, and for eggs of T. suis – 0.57 ± 0.03% and 1.80 ± 0.11% respectively. The lowest influence on the development of eggs of nematodes of pigs’ A. suum and T. suis was exerted by formic acid, linalool, citral and β-ionone. In eggs of A. suum and T. suis, larvae formed in 21 and 50 days even during exposure to 3% emulsions of these substances. The strongest negative impact on the eggs of parasitic nematodes was displayed by cinnamaldehyde flavouring. Further study on nematocidal properties of flavourings, as well as their mixtures, would contribute to the development of preparations which would have a strong effect on eggs and larvae of nematodes of animals and humans.

References

Alborzi, S., Bastarrachea, L. J., Ding, Q., & Tikekar, R. V. (2018). Inactivation of Escherichia coli O157:H7 and Listeria innocua by benzoic acid, ethylenediaminetetraacetic acid and their combination in model wash water and simulated spinach washing. Journal of Food Science, 83(4), 1032–1040.

Bedford, P., & Clarke, E. (1972). Experimental benzoic acid poisoning in the cat. Veterinary Record, 90(3), 53–58.

Boyko, A. A., & Brygadyrenko, V. V. (2016). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 519–525.

Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Boyko, A. A., & Brygadyrenko, V. V. (2018). The impact of certain flavourings and preservatives on the survivability of larvae of nematodes of Ruminantia. Regulatory Mechanisms in Biosystems, 9(1), 118–123.

Boyko, O. O., & Brygadyrenko, V. V. (2019a). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.

Boyko, O. O., & Brygadyrenko, V. V. (2019b). The viability of Haemonchus contortus (Nematoda, Strongylida) and Strongyloides papillosus (Nematoda, Rhabditida) larvae exposed to various flavourings and source materials used in food production. Vestnik Zoologii, 53(6), 433–442.

Boyko, O. O., & Brygadyrenko, V. V. (2019с). Nematocidial activity of aqueous solutions of plants of the families Cupressaceae, Rosaceae, Asteraceae, Fabaceae, Cannabaceae and Apiaceae. Biosystems Diversity, 27(3), 227–232.

Brütsch, T., Jaffuel, G., Vallat, A., Turlings, T.C.J., & Chapuisat, M. (2017). Wood ants produce a potent antimicrobial agent by applying formic acid on tree-collected resin. Ecology and Evolution, 7(7), 2249–2254.

Ceballos, L., Canton, C., Cadenazzi, G., Virkel, G., Dominguez, P., Moreno, L., Lanusse, C., & Alvarez, L. (2019). Oxfendazole kinetics in pigs: In vivo assessment of its pattern of accumulation in Ascaris suum. Experimental Parasitology, 199, 52–58.

Cheng, S. S., Liu, J. Y., Huang, C. G., Hsui, Y. R., Chen, W. J., & Chang, S. T. (2009). Insecticidal activities of leaf essential oils from Cinnamomum osmophloeum against three mosquito species. Bioresource Technology, 100(1), 457–464.

de Oliveira, N. T. E., Carvalho, P. L. de O., Genova, J. L., Silveira, F. H. R., Ogawa, L., Cristofori, E. C., Caxias Junior, O. A., & Santana, A. L. A. (2019). Effect of endoparasites occurrence in sows from intensive production system. Revista Brasiliera de Parasitologia Veterinaria, 28(4), 722–727.

Ding, Q. (2017). The antimicrobial effect of benzoic acid or propyl paraben treatment combined with UV-A light on Escherichia coli O157:H7. University of Maryland, College Park, Maryland.

Durgadevi, R., Veera Ravi, A., Alexpandi, R., Krishnan Swetha, T., Abirami, G., Vishnu, S., & Karutha Pandian, S. (2019). Virulence targeted inhibitory effect of linalool against the exclusive uropathogen Proteus mirabilis. Biofouling, 35(5), 508–525.

Fitri Noor Inaya, A., Kismiyati, K., & Subekti, S. (2019). Pengaruh perasan biji pepaya (Carica papaya) terhadap kerusakan telur Argulus japonicus [The influence of papaya seed (Carica papaya) toward the damage eggs of Argulus japonicus]. Jurnal Ilmiah Perikanan Dan Kelautan, 7(2), 159.

Jakimowska, K. (1961). Pharmacological properties of certain aromatic boron compounds. Acta Physiologica Polonica, 12, 173–182.

Jakobsen, S. R., Myhill, L. J., & Williams, A. R. (2019). Effects of Ascaris and Trichuris antigens on cytokine production in porcine blood mononuclear and epithelial cells. Veterinary Immunology and Immunopathology, 211, 6–9.

Jenner, P. M., Hagan, E. C., Taylor, J. M., Cook, E. L., & Fitzhugh, O. G. (1964). Food flavourings and compounds of related structure I. Acute oral toxicity. Food and Cosmetics Toxicology, 2, 327–343.

Katiki, L. M., Barbieri, A. M. E., Araujo, R. C., Veríssimo, C. J., Louvandini, H., & Ferreira, J. F. S. (2017). Synergistic interaction of ten essential oils against Haemonchus contortus in vitro. Veterinary Parasitology, 243, 47–51.

Lee, E. J., Kim, J. R., Choi, D. R., & Ahn, Y. J. (2008). Toxicity of cassia and cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae). Journal of Econonic Entomology, 101(6), 1960–1966.

Lindgren, K., Gunnarsson, S., Höglund, J., Lindahl, C., & Roepstorff, A. (2019). Nematode parasite eggs in pasture soils and pigs on organic farms in Sweden. Organic Agriculture, 2020, in press.

Manu, D. K. (2016). Antimicrobial activity of cinnamaldehyde or geraniol alone or combined with high pressure processing to destroy Escherichia coli O157:H7 and Salmonella enterica in juices. Iowa State University, Ames.

Montgomery, J. (2000). Groundwater chemicals desk reference. 3rd edition. Imprint CRC Press, Boca Raton.

Na, Y. E., Kim, S. I., Bang, H. S., Kim, B. S., & Ahn, Y. J. (2011). Fumigant toxicity of cassia and cinnamon oils and cinnamaldehyde and structurally related compounds to Dermanyssus gallinae (Acari: Dermanyssidae). Veterinary Parasitology, 178, 324–329.

Nwafor, I. C., Roberts, H., & Fourie, P. (2019). Prevalence of gastrointestinal helminths and parasites in smallholder pigs reared in the central free state province. Onderstepoort Journal of Veterinary Research, 86(1), e1–e8.

Nyasinge, J., Montero, G. D., Valladares, M. B., Noah, J. O. O., & Nkwangu, D. (2018). In-vitro antihelminthic activity of alcoholic extract from Paullinia pinnata Linn against Ascaris suum. Revista Cubana de Plantas Medicinales, 23(1), 443.

Oh, K.-S., Kim, G.-T., Ahn, K.-S., & Shin, S.-S. (2016). Effects of disinfectants on larval development of Ascaris suum eggs. Korean Journal of Parasitology, 54(1), 103–107.

Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kulishenko, O. M., Borovik, I. V., Chumak, V., Kryvaya, A., & Boyko, O. O. (2019). Bactericidal, protistocidal, nematodicidal properties and chemical composition of ethanol extract of Punica granatum peel. Biosystems Diversity, 27(3), 300–306.

Palma, A., Matamoros, G., Escobar, D., Sánchez, A. L., & Fontecha, G. (2020). Absence of mutations associated with resistance to benzimidazole in the beta-tubulin gene of Ascaris suum. Revista da Sociedade Brasiliera de Medicina Tropical, 53, e20190155.

Ren, C., Wang, Y., Lin, X., Song, H., Zhou, Q., Xu, W., Shi, K., Chen, J., Song, J., Chen, F., Zhang, S., & Guan, W. (2020). A combination of formic acid and monolaurin attenuates enterotoxigenic Escherichia coli induced intestinal inflammation in piglets by inhibiting the NF-B/MAPK pathways with modulation of gut microbiota. Journal of Agricultural and Food Chemistry, 68(14), 4155–4165.

Saddiq, A. A., & Khayyat, S. A. (2010). Chemical and antimicrobial studies of monoterpene: Citral. Pesticide Biochemistry and Physiology, 98(1), 89–93.

Sea, O., Hariadi, M., Koesdarto, S., Yunus, M., Kusnoto, K., & Ngakan Made, R. W. (2017). Anthelmintic activity of basil leaves (Ocimum sanctum Linn.) infusion against Ascaris suum in vitro. Journal of Parasite Science, 1(2), 47–50.

Shen, F., Xing, M., Liu, L., Tang, X., Wang, W., Wang, X., Wu, X., Wang, X., Wang, X., Wang, G., Zhang, J., Li, L., Zhang, J., & Yu, L. (2012). Efficacy of trans-cinnamaldehyde against Psoroptes cuniculi in vitro. Parasitology Research, 110, 1321–1326.

Simalango, D. M., & Utami, N. V. (2014). In-vitro antihelminthic effect of ethanol extract of black seeds (Nigella sativa) against Ascaris suum. Procedia Chemistry, 13, 181–185.

Ullah, I., Latif, A. K., Ali, L., Khan, A. R., Waqas, M., Hussain, J., Lee, I. J., & Shin, J. H. (2015). Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. Journal of Microbiology, 53(2), 127–133.

Vandekerckhove, E., Vlaminck, J., Sacristán, R. del P., & Geldhof, P. (2019). Effect of strategic deworming on Ascaris suum exposure and technical performance parameters in fattening pigs. Veterinary Parasitology, 268, 67–72.

Von Oettingen, W. F. (1960). The aliphatic acids and their esters: Toxicity and potential dangers. The saturated monobasic aliphatic acids and their esters. American Medical Association Archives of Industrial Health, 21(1), 28–65.

Williams, A. R., Peña-Espinoza, M. A., Boas, U., Simonsen, H. T., Enemark, H. L., & Thamsborg, S. M. (2016). Anthelmintic activity of chicory (Cichorium intybus): In vitro effects on swine nematodes and relationship to sesquiterpene lactone composition. Parasitology, 143(6), 770–777.

Williams, A. R., Soelberg, J., & Jäger, A. K. (2016). Anthelmintic properties of traditional African and Caribbean medicinal plants: Identification of extracts with potent activity against Ascaris suum in vitro. Parasite, 23, 24.

Yi, C. G., Hieu, T. T., Lee, S. H., Choi, B. R., Kwond, M., & Ahna, Y. J. (2016). Toxicity of Lavandula angustifolia oil constituents and spray formulations to insecticide-susceptible and pyrethroid-resistant Plutella xylostella and its endoparasitoid Cotesia glomerata. Pest Management Science, 72(6), 1202–1210.

Zajac, A. M., & Conboy, G. A. (Eds.). (2011). Veterinary clinical parasitology. 8th ed. John Wiley and Sons, London.

Zhao, J., Han, Q., Liao, C., Wang, J., Wu, L., Liu, Q., & Lindsay, D. S. (2017). Effects of in vivo and in vitro treatment of Ascaris suum eggs with anthelmintic agents on embryonation and infectivity for mice. Journal of Parasitology, 103(5), 598–601.

Zheng, Y., Xie, Y., Geldhof, P., Vlaminck, J., Ma, G., Gasser, R. B., & Wang, T. (2020). High anti-Ascaris seroprevalence in fattening pigs in Sichuan, China, calls for improved management strategies. Parasites Vectors, 13(1), 60.

Zu, K., Pizzurro, D. M., Lewandowski, T. A., & Goodman, J. E. (2017). Pharmacokinetic data reduce uncertainty in the acceptable daily intake for benzoic acid and its salts. Regulatory Toxicology and Pharmacology, 89, 83–94.

Published
2020-05-28
How to Cite
Boyko, O. O., & Brygadyrenko, V. V. (2020). The impact of certain flavourings and preservatives on the survivability of eggs of Ascaris suum and Trichuris suis . Regulatory Mechanisms in Biosystems, 11(2), 344-348. https://doi.org/10.15421/022052

Most read articles by the same author(s)

> >>