Dendroindication of ecoclimatic condition in forest remediation area within Northern Steppe of Ukraine

  • Y. I. Gritsan Dnipro State Agrarian and Economic University
  • V. M. Lovynska Dnipro State Agrarian and Economic University
  • S. A. Sytnyk Dnipro State Agrarian and Economic University
  • A. I. Hetmanchuk Eastern European National University by Lesya Ukrainka
Keywords: Scots pine; precipitation; temperature; width of annual radial increment; earlywood; latewood.

Abstract

We analyzed ring width, latewood width and earlywood width of Pinus sylvestris trees under normal and flood condition in Dnipropetrovsk region, within Northern Steppe of Ukraine. Precipitation from February to August seems to be the most stable climatic factor which influenced Scots pine growth rate and caused the difference between maximum and minimum ring width in normal conditions. Meteorological conditions were mainly associated with general ring values and earlywood width, and were less associated with latewood width values. Assessment of the effect of climatic signals on tree rings’ growth process in living and dead trees and in the normal and flood condition by analyses of correlation and response function was conducted. Average annual temperatures affected the tree growth negatively in normal conditions and tree increment positively in flood conditions. Annual precipitation was correlated positively with ring width, earlywood width series in normal conditions, but negatively with these series in flood conditions.

References

Antonova, G. F., Perevoznikova, V. D., & Stasava, V. V. (1999). Vliyanie uslovij proizrastaniya na strukturu godichnogo sloya drevesiny i produktivnost’ sosny obyknovennoj [The influence of growing conditions on the structure of the annual wood layer and the productivity of Scots pine]. Forestry, 6, 45–53 (in Russian).

Arbellay, E., Corona, C., Stoffel, M., Fonti, P., & Decaulne, A. (2012a). Defining an adequate sample of earlywood vessels for retrospective injury detection in diffuse-porous species. PLoS One 7, e38824.

Arbellay, E., Fonti, P., & Stoffel, M. (2012b). Duration and extension of anatomical changes in wood structure after cambial injury. Journal of Experimental Botany, 63, 3271–3277.

Armstrong, W., Brandle, R., & Jackson, M. B. (1994). Mechanisms of flood tolerance in plants. Acta Botanica Neerlandica, 43, 307–358.

Badeau, V., Becker, M., Bert, D., Dupouey, J. L., Lebourgeois, F., & Picard, J. F. (1996). Long-term growth trends of trees: Ten years of dendrochronological studies in France. In: Spiecker, H., Mielikainen, K., Kohl, M., & Skovsgaard, J. P. (Eds.). Growth trends in European forests. Springer-Verlag, Berlin, Heidelberg, New York. Pp. 167–182.

Ballesteros-Cánovas, J. A., Stoffel, M., St George, S., & Hirschboeck, K. (2015). A review of flood records from tree rings. Progress in Physical Geography: Earth and Environment, 39(6), 794–816.

Ballesterosi, J. A., Stoffel, M., Bodoque, J. M., Bollschweiler, M., Hitz, O., & Díez-Herrero, A. (2010). Changes in wood anatomy in tree rings of Pinus pinaster A It. following wounding by flash floods. Tree-Ring Research, 66(2), 93–103.

Barredo, J.-I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System Science, 9 (1), 97–104.

Borgaonkar, H. P., Somaru, R., & Sikder, A. B. (2009). Assessment of tree-ring analysis of high-elevation Cedrus deodara D. Don from Western Himalaya (India) in relation to climate and glacier fluctuations. Dendrochronologia, 27, 59–69.

Brienen, R. J. W., & Zuidema, P. A. (2006). The use of tree rings in tropical forest management: Projecting timber yields of four Bolivian tree species. Forest Ecology and Management, 226, 256–267.

Brygadyrenko, V. V. (2015). Influence of tree crown density and density of the herbaceous layer on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 23(2), 134–148.

Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 240–248.

Carlón-Allende, T., Villanueva-Díaz, H., Mendoza, M. E., & Pérez-Salicrup, D. R. (2018). Climatic signal in earlywood and latewood in conifer forests in the Monarch Butterfly biosphere reserve, Mexico. Tree-Ring Research, 74(1), 63–75.

Castagneri, D., Nola, P., Motta, R., & Carrer, M. (2014). Summer climate variability over the last 250 years differently affected tree species radial growth in a mesic Fagus–Abies–Picea old-growth forest. Forest Ecology and Management, 320, 21–29.

Cedro, A. (2001). Dependence of radial growth of Pinus sylvestris L. from Western Pomerania on the rainfall and temperature conditions. Geochronometria, 20, 69–74.

Chirkova, T. V., & Gutman, T. S. (1972). Physiological role of branch lenticels in willow and poplar under conditions of root anaerobiosis. Soviet Plant Physiology, 19, 289–295.

Cleaveland, M. K., Stahle, D. W., Therrell, M. D., Villanueva-Diaz, J., & Burns, B. T. (2003). Tree-ring reconstructed winter precipitation and tropical teleconnections in Durango, Mexico. Climatic Change, 59, 369–388.

Dankers, R. & Feyen, L. (2008). Climate change impact on flood hazard in Europe: An assessment based on highresolution climate simulations. Journal of Geophysical Research, 113, D19105.

Ewing, K. (1996). Tolerance of four wetland plant species to flooding and sediment deposition. Environmental and Experimental Botany, 36(2), 131–146.

Ferrio, J. P., Díez-Herrero, A., Tarrés, D., Ballesteros-Cánovas, J. A., Aguilera, M., & Bodoque, J. M. (2015). Using stable isotopes of oxygen from tree-rings to study the origin of past flood events: first results from the iberian peninsula. Quaternaire, 26(1), 67–80.

Fritts, H. C. (1991). Reconstructing large-scale climatic patterns from tree-ring data: A diagnostic analysis. Tucson & London, University of Arizona Press.

García-Suárez, A. M., Butler, C. J., & Baillie, M. G. L. (2009). Climate signal in tree-ring chronologies in a temperate climate: A multi-species approach. Dendrochronologia, 27(3), 183–198.

Glebov, F. Z., & Litvinenko, V. I. (1976). Dinamika shiriny godichnyh kolec v svyazi s meteorologicheskimi pokazatelyami v razlichnyh tipah bolotnyh lesov [Dynamics of annual rings width due to meteorological indicators in various types of swamp forests]. Forestry, 4, 56–62 (in Russian).

Glenz, C., Schlaepfer, R., Iorgulescu, I., & Kienast, F. (2006). Flooding tolerance of Central European tree and shrub species. Forest Ecology and Management, 235, 1–13.

Griffin, D. R., Meko, D. M., Touchan, R., Leavitt, S. W., & Woodhouse, C. A. (2011). Latewood chronology development for summer-moisture reconstruction in the US Southwest. Tree Ring Research, 67, 87−101.

Hook, D. D. (1984). Adaptations to flooding with fresh water. In: Kozlowski, T. T. (Ed.). Flooding and Plant Growth. Academic Press, Orlando. Pp. 265–294.

Hughes, F. M. R., Harris, T., Richards, K., Pautou, G., Hames, A. E., Barsoum, N., Girel, J., Peiry, J.-L., & Foussadier, R. (1997). Woody riparian species response to different soil moisture conditions: Laboratory experiments on Alnus incana (L.) Moench. Global Ecology and Biogeography Letters, 6, 247–256.

Jayawickrama, K., Mckeand, S., Jett, J. B., & Wheeler, E. (1997). Date of earlywood-latewood transition in provenances and families of loblolly pine, and its relationship to growth phenology and juvenile wood specific gravity. Canadian Journal of Forest Research, 27, 1245–1253.

Kozlowski, T. T. (1997). Responses of woody plants to flooding and salinity. Tree Physiology, 17(7), 490.

Krasnobaeva, K. V., & Mityashkina, S. Y. (2006). Dendroclimatic analysis of the growth of Scots pine in geographical cultures. Forestry, 4, 45–51.

Larson, P. R. (1969). Wood formation and the concept of wood quality. Yale University, School of Forestry.

Lebourgeois, F., Cousseau, G., & Ducos, Y. (2004). Climate – treegrowth relationships of Quercus petraea Mill. stand in the Forest of Bercé (“Futaie des Clos”, Sarthe, France). Annals of Forest Science, 61, 361–372.

Lindholm, M., Lehtonen, H., Kolstrom, T., Merilainen, J., Eronen, M., & Timonen, M. (2000). Climatic signals extracted from ring-width chronologies of Scots pines from the northern, middle and southern parts of boreal forest belt in Finland. Silva Fennica, 34, 317–330.

Lindner, M., Maroschek, M., Netherer, S., Kremer, A., Barbati, A., Garcia-Gonzalo, J., Seidl, R., Delzon, S., Corona, P., Kolström, M., Lexer, M. J., & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259, 698–709.

Nikolaeva, S. A., Savchuk, D. A., & Bocharov, A. Y. (2006). Vliyanie vneshnih i vnutrennih faktorov na produktivnost’ derev’ev [Effect of external and internal factors on tree productivity]. In: Zuev, V. V. (Ed.). Bioindication of stratospheric ozone. Publishing House of the SD RAS, Novosibirsk. Pp. 118–131 (in Russian).

Nikolaeva, S. A., & Savchuk, D. A. (2008). Klimatogennaya reakciya derev’ev sosny na yuge Tomskoj oblasti [Climatogenetic response of pine trees in southern Tomsk oblast]. Journal of Siberian Federal University, Biology, 1(4), 400–413 (in Russian).

Pakhomov, O., Kulbachko, Y., Didur, O., & Loza, I. (2008). Mining dump rehabilitation: The potential role of bigeminate-legged millipeds (Diplopoda) and artificial mixed-soil habitats. In: Apostol, I., Barry, D. L., Coldewey, W. G., & Reimer, D. W. G. (Eds.). Optimisation of disaster forecasting and prevention measures in the context of human and social dynamics. Nato science for peace and security series E-human and societal dynamics. Chisinau, Moldova, 52, 163–171.

Phipps, R. L. (1982). Comments on the interpretation of climatic information from tree-rings, eastern North America. Tree-Ring Bulletin, 42, 11–22.

Scherbatyuk, A. S., Yankova, L. S., & Rusakova, L. V. (1990). Ekologo-fiziologicheskie osobennosti gazoobmena hvojnyh [Ecological and physiological characteristics of coniferous gas exchange]. Forestry, 4, 3–10 (in Russian).

Speer, J. H. (2010). Fundamentals of tree-ring research. University of Arizona Press, Tucson.

Suvorova, G. G., Yankova, L. S., Kopytova, L. D., & Filippova, A. K. (2005). Optimal’nye faktory sredy i intensivnost’ fotosinteza sosny obyknovennoj i listvennicy sibirskoj v Predbajkal’e [Optimal environmental factors and the intensity of photosynthesis of Scots pine and Siberian larch in Prebaikalia]. Siberian Journal of Ecology, 1, 85–95 (in Russian).

Torbenson, M. C. A., Stahle, D. W., Díaz, J. V., Cook, E. R., & Griffin, D. R. (2016). The relationship between earlywood and latewood ring-growth across North America. Tree Ring Research, 72(2), 53–66.

Vaganov, E. A., & Kachaev, A. V. (1992). Dendroklimaticheskij analiz rosta sosny v lesobolotnyh fitocenozah Tomskoj oblasti [Dendroclimatic analysis of pine growth in forest phytocenoses of the Tomsk region]. Forestry, 6, 3–10 (in Russian).

Vaganov, E. A., Hughes, M. K., & Shashkin, A. V. (2006). Growth dynamics of conifer tree rings: Images of past and future environments. Springer-Verlag, Berlin, Heidelberg.

Villanueva, D. J., Luckman, B. H., Stahle, D. W., Therrell, M. D., Cleaveland, M. K., Cerano-Paredes, J., Gutierrez-Garcia, G., Estrada-Avalos, J., & Jasso-Ibarra, R. (2005). Hydroclimatic variability of the upper Nazas basin: Water management implications for the irrigated area of the Comarca Lagunera. Dendrocronologia, 22(3), 215–223.

Villanueva-Diaz, J., Stahle., D. W., Luckman, B. H., CeranoParedes, J., Therrell, M. D., Cleaveland, M. K., & Cornejo Oviedo, E. (2007). Winter-spring precipitation reconstructions from tree rings for northeast Mexico. Climate Change, 83, 117–131.

Vitas, A. (2004). Dendroclimatological research of Scots pine (Pinus sylvestris L.) in the Baltic coastal zone of Lithuania. Baltic Forestry, 10(1), 65–71.

Zabuga, V. F., & Zabuga, G. A. (2003). Zavisimost’ radial’nogo prirosta sosny obyknovennoj ot faktorov vneshnej sredy v lesostepi Predbajkal’ya [The dependence of the radial growth of Scots pine on environmental factors in the Forest-Steppe Prebaikalia]. Forestry, 5, 30–37 (in Russian).

Zabuga, V. F., & Zabuga, G. A. (2006). Vliyanie faktorov vneshnej sredy na rost stvola sosny obyknovennoj v lesostepnom Predbajkal’e [Influence of environmental factors on growth of the Archangel fir trunk in the Forest-Steppe Prebaikalia]. Conifers of the Boreal Area, 23(3), 86–95 (in Russian).

Zobel, B. J., & Jett, J. B. (1995). Genetics of wood production. Springer Verlag, Berlin.

Zunde, M., Briede, A., & Elferts, D. (2008). The influence of climatic factors on the radial growth of Scots pine (Pinus sylvestris) in Western Latvia. Proceeding of the Latvian Academy of Sciences, Natural, Exact, and Applied Sciences, 62(3), 120–128.

Published
2019-11-03
How to Cite
Gritsan, Y. I., Lovynska, V. M., Sytnyk, S. A., & Hetmanchuk, A. I. (2019). Dendroindication of ecoclimatic condition in forest remediation area within Northern Steppe of Ukraine . Regulatory Mechanisms in Biosystems, 10(4), 457-463. https://doi.org/10.15421/021967