Influence of pathogenetic factors of type 2 diabetes on activation of PI3K/AkT/mTOR pathway and on the development of endometrial and breast cancer

  • T. S. Vatseba
Keywords: insulin; IGF-1; hyperglycemia; oncogenesis; intracellular regulatory systems.

Abstract

Type 2 diabetes (T2D), which is an epidemic of the 20th century, increases mortality, caused not only by cardiovascular diseases but also cancer. Pathogenetic factors of T2D lead to dysfunction of intracellular regulatory systems, particularly of PI3K/Akt/mTOR signaling pathway, which is involved in development of breast and endometrial cancer. During the study, the activation of this pathway by cancer and T2D was examined by determining the content of phosphorylated PRAS40 and p70S6K1. We studied the link between these kinases and pathogenetic factors of T2D. 65 women were examined. Patients were divided into four groups: І – healthy, ІІ – women with T2D, ІІІ – women with cancer without diabetes, IV – women with cancer and T2D. Level of HbA1c was determined by the ion-exchange chromatography. Levels of insulin, IGF-1, phospho-PRAS40, phospho-p70S6K1 were determined in PBMCs by immune-enzymatic methods. According to research results, significant hyperinsulinemia was detected in both groups with T2D. The highest level of insulin was in group II. A significantly higher level of IGF-1 was found only in patients with cancer of group III. The content of phospho-PRAS40 and phospho-p70S6K1 was higher in women with T2D of group II and in women with cancer of group III. Patients in group IV with combination of cancer and T2D had a lower level of phospho-PRAS40 in comparison to other groups. Phospho-PRAS40 in group II correlates with insulin, IGF-1 and HbA1c; in groups III and IV only with BMI. Phospho-p70S6K1 correlates with IGF-1 and with HbA1c in group II. Pathogenetic factors of T2D activate the signal path PI3K/Akt/mTOR, which is involved in the regulation of oncogenesis and metabolism. Phosphorylation of PRAS40 and p70S6K1 reflects the activation of P13K/Akt/mTOR pathway in women with T2D. Increased levels the phospho-PRAS40 and phospho-p70S6K1 can be used as early markers of oncogenesis in women with T2D.

References

Alayev, A., Salamon, R. S., Berger, S. M., Schwartz, N. S., Cuesta, R., Snyder, R. B., & Holz, M. K. (2016). mTORC1 directly phosphorylates and activates ERα upon estrogen stimulation. Oncogene, 35(27), 3535–3543.

Beg, M. S., Dwivedi, A. K., Ahmad, S. A., Ali, S., & Olowokure, O. (2014). Impact of diabetes mellitus on the outcome of pancreatic cancer. Plos One, 9(5), e98511.

Blakemore, J., & Naftolin, F. (2016). Aromatase: Contributions to physiology and disease in women and men. Physiology, 31, 258–269.

Chang, S.-C., & Yang, W.-C. V. (2016). Hyperglycemia, tumorigenesis, and chronic inflammation. Critical reviews in oncology. Hematology, 108, 146–153.

Chen, J., Zhao, K. N., Li, R., Shao, R., & Chen, C. (2014). Activation of PI3K/Akt/mTOR pathway and dual inhibitors of PI3K and mTOR in endometrial cancer. Current Medicinal Chemistry, 21(26), 3070–3080.

Dai, C., Li, N., Song, G., Yang, Y., & Ning, X. (2016). Insulin-like growth factor 1 regulates growth of endometrial carcinoma through PI3k signaling pathway in insulin-resistant type 2 diabetes. American Journal of Translational Research, 8(8), 3329–3336.

Dossus, L., Rinaldi, S., Becker, S., Lukanova, A., Tjonneland, A., Olsen, A., Stegger, J., Overvad, K., Chabbert-Buffet, N., Jimenez-Corona, A., Clavel-Chapelon, F., Rohrmann, S., Teucher, B., Boeing, H., Schütze, M., Trichopoulou, A., Benetou, V., Lagiou, P., Palli, D., Berrino, F., Panico, S., Tumino, R., Sacerdote, C., Redondo, M. L., Travier, N., Sanchez, M. J., Altzibar, J. M., Chirlaque, M. D., Ardanaz, E., Bueno-de-Mesquita, H. B, van Duijnhoven, F. J., Onland-Moret, N. C., Peeters, P. H., Hallmans, G., Lundin, E., Khaw, K. T., Wareham, N., Allen, N., Key, T. J., Slimani, N., Hainaut, P., Romaguera, D., Norat, T., Riboli, E., & Kaaks, R. (2010). Obesity, inflammatory markers, and endometrial cancer risk: A prospective case-control study. Endocrine-Related Cancer, 17(4), 1007–1019.

Ferroni, P., Riondino, S., Laudisi, A., Portarena, I., Formica, V., Alessandroni, J., Alessandro, R., Orlandi, A., Costarelli, L., Cavaliere, F., Guadagni, F., & Roselli, M. (2016). Pretreatment insulin levels as a prognostic factor for breast cancer progression. The Oncologist, 21(9), 1041–1049.

Friedenreich, C. M., Langley, A. R., Speidel, T. P., Lau, D. C., Courneya, K. S., Csizmadi, I., Magliocco, A. M., Yasui, Y., & Cook, L. S. (2012). Case-control study of markers of insulin resistance and endometrial cancer risk. Endocrine-Related Cancer, 19(6), 785–792.

Gang, P. J., Mo, L., Lu, Y., Runqi, L., & Xing, Z. (2015). Diabetes mellitus and the risk of prostate cancer: An update and cumulative meta-analysis. Endocrine Research, 40(1), 54–61.

García-Jiménez, C., Gutiérrez-Salmerón, M., Chocarro-Calvo, A., García-Martinez, J. M., Castaño, A., & De la Vieja, A. (2016). From obesity to diabetes and cancer: Epidemiological links and role of therapies. British Journal of Cancer, 114(7), 716–722.

Gelsomino, L., Naimo, G. D., Catalano, S., Mauro, L., & Andò, S. (2019). The emerging role of adiponectin in female malignancies. International Journal of Molecular Sciences, 20(9), 2127.

Gu, L., Cao, C., Fu, J., Li, Q., Li, D. H., & Chen, M. Y. (2018). Serum adiponectin in breast cancer: A meta-analysis. Medicine, 97(29), e11433.

Guerrero-Zotano, A., Mayer, I. A., & Arteaga, C. L. (2016). PI3K/AKT/mTOR: Role in breast cancer progression, drug resistance, and treatment. Cancer and Metastasis Reviews, 35(4), 515–524.

Harding, J. L., Shaw, J. E., Peeters, A., Cartensen, B., & Magliano, D. J. (2015). Cancer risk among people with type 1 and type 2 diabetes: Disentangling true associations, detection bias, and reverse causation. Diabetes Care, 38(2), 264–270.

Hare, S. H., & Harvey, A. J. (2017). mTOR function and therapeutic targeting in breast cancer. American Journal of Cancer Research, 7(3), 383–404.

Hendriks, S. H., Schrijnders, D., van Hateren, K. J., Groenier, K. H., Siesling, S., Maas, A., Bilo, H. J. G., Landman, G. W. D., & Kleefstra, N. (2018). Association between body mass index and obesity-related cancer risk in men and women with type 2 diabetes in primary care in the Netherlands: A cohort study (Zodiac-56). BMJ Open, 8(1), e018859.

Holz, M. K. (2012). The role of S6K1 in ER-positive breast cancer. Cell Cycle, 11(17), 3159–3165.

Joung, K. H., Jeong, J. W., & Ku, B. J. (2015). The association between type 2 diabetes mellitus and women cancer: The epidemiological evidences and putative mechanisms. Biomed Research International, 2015, 920618.

Karlsson, E., Magić, I., Bostner, J., Dyrager, C., Lysholm, F., Hallbeck, A. L., Stål, O., & Lundström, P. (2015). Revealing different roles of the mTOR-targets S6K1 and S6K2 in breast cancer by expression profiling and structural analysis. Plos One, 10(12), e0145013.

Kim, L. C., Cook, R. S., & Chen, J. (2017). mTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene, 36(16), 2191–2201.

Li, W., Saud, S. M., Young, M. R., Chen, G., & Hua, B. (2015). Targeting AMPK for cancer prevention and treatment. Oncotarget, 6(10), 7365–7378.

Lv, D., Guo, L., Zhang, T., & Huang, L. (2017). PRAS40 signaling in tumor. Oncotarget, 8(40), 69076–69085.

Lykholat, T., Lykholat, O., & Antonyuk, S. (2016). Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. Cytology and Genetics, 50(1), 32–41.

Malla, R., Ashby, C. R., Narayanan, N. K., Narayanan, B., Faridi, J. S., & Tiwari, A. K. (2015). Proline-rich AKT substrate of 40-kDa (PRAS40) in the pathophysiology of cancer. Biochemical and Biophysical Research Communications, 463(3), 161–166.

Misnikova, I. V. (2016). Diabet i rak [Diabetes and cancer]. Rosiyskyy Medychnyy Zhurnal, 20, 1346–1350 (in Russian).

Nagle, C. M., Crosbie, E. J., Brand, A., Obermair, A., Oehler, M. K, Quinn, M., Leung, Y., Spurdle, A. B., & Webb, P. M. (2016). The association between diabetes, comorbidities, body mass index and all-cause and cause-specific mortality among women with endometrial cancer. Gynecologic Oncology, 150(1), 99–105.

Nead, K. T., Sharp, S. J., Thompson, D. J., Painter, J. N., Savage, D. B., Semple, R. K., Barker, A., Perry, J. R. B., Attia, J., Dunning, A. M., Easton D. F., Holliday, E., Lotta, L. A., O’Mara, T., McEvoy, M., Pharoah, P. D. P., Scott, R. J., Spurdle, A. B., Langenberg, C., Wareham, N. J., & Scott, R. A. (2015). Evidence of a causal association between insulinemia and endometrial cancer: A Mendelian randomization analysis. Journal of the National Cancer Institute, 107(9), djv178.

Onstad, M. A., Schmandt, R. E., & Lu, K. H. (2016). Addressing the role of obesity in endometrial cancer risk, prevention, and treatment. Journal of Clinical Oncology, 34(35), 4225–4230.

Pan, H., Deng, L. L., Cui, J. Q., Shi, L., Yang, Y. C., Luo, J. H., Qin, D., & Wang, L. (2018). Association between serum leptin levels and breast cancer risk: An updated systematic review and meta-analysis. Medicine, 97(27), e11345.

Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976.

Simó, R., Sáez-López, C., Barbosa-Desongles, A., Hernández, C., & Selva, D. M. (2015). Novel insights in SHBG regulation and clinical implications. Trends Endocrinology and Metabolism, 26, 376–383.

Tian, W., Teng, F., Zhao, J., Gao, J., Gao, C., Sun, D., Liu, G., Zhang, Y., Yu, S., Zhang, W., Wang, Y., & Xue, F. (2017). Estrogen and insulin synergistically promote type 1 in endometrial cancer progression. Cancer Biology and Therapy, 18(12), 1000–1010.

Vatseba, T. S., & Sokolova, L. K. (2018). Patohenetychni mekhanizmy onkohenezu na tli tsukrovoho diabetu ta analiz onkolohichnoyi zakhvoryuvanosti khvorykh na tsukrovyy diabet v Karpatsʹkomu rehioni [Pathogenetic mechanisms of oncogenesis on the background of diabetes mellitus and analysis of oncological morbidity of patients with diabetes mellitus in the Carpathian region]. Endokrynologia, 23(2), 128–137 (in Ukrainian).

Vicennati, V., Garelli, S., Rinaldi, E., Rosetti, S., Zavatta, G., Pagotto, U., & Pasquali, R. (2015). Obesity-related proliferative diseases: The interaction between adipose tissue and estrogens in post-menopausal women. Hormone Molecular Biology and Clinical Investigation, 21, 75–87.

Wang, Z., Wang, N., Liu, P., & Xie, X. (2016). AMPK and cancer. In: Cordero, M., & Viollet, B. (Ed.). AMP-activated Protein Kinase. Springer Cham. Pp. 203–226.

Xin, C., Jing, D., Jie, T., Wu-Xia, L., Meng, Q., & Ji-Yan, L. (2015). The expression difference of insulin-like growth factor 1 receptor in breast cancers with or without diabetes. Journal of Cancer Research and Therapeutics, 11(2), 295–299.

Zhang, J., Wang, Y., Liu, X., Dagda, R. K., & Zhang, Y. (2017). How AMPK and PKA interplay to regulate mitochondrial function and survival in models of ischemia and diabetes. Oxidative Medicine and Cellular Longevity, 2017, 4353510.

Zhu, B., Wu, X., Wu, B., Pei, D., Zhang, L., & Wei, L. (2017). The relationship between diabetes and colorectal cancer prognosis: A meta-analysis based on the cohort studies. PLoS One, 12(4), e0176068.

Published
2019-08-18
How to Cite
Vatseba , T. S. (2019). Influence of pathogenetic factors of type 2 diabetes on activation of PI3K/AkT/mTOR pathway and on the development of endometrial and breast cancer . Regulatory Mechanisms in Biosystems, 10(3), 295-299. https://doi.org/10.15421/021945