Regulation of biosynthesis of lipids in Chlorella vulgaris by compounds of zinc, chromium and selenium

Keywords: microalgae; micronutrients; lipid metabolism; fatty acids

Abstract

We studied molecular and metabolic mechanisms of regulated lipid biosynthesis in Chlorella vulgaris aquaculture. after addition of sodium selenite (10 mg/dm3) when added separately and in combination with Zn2+ (5 mg/dm3) and Cr3+ (5 mg/dm3) during 7 days of their action in order to obtain biotechnologically useful lipid products, enriched with microelements. Experiments were carried out in accordance with generally accepted hydrological and biochemical methods. It was established that micronutrients that were added into the medium result in an increase in the total content of lipids in the range of 10%. The redeployment of lipid classes in chlorella cells occurs due to the action of sodium selenite in favour of phospholipids by reducing the proportion of diacylglycerols, while the amount of triacylglycerols and nonetherified fatty acids does not change. Combined action of sodium selenite and zinc ions leads to the significant increase of the relative content of diacylglycerols, and partial increase of nonetherified fatty acids, at the same time in the cells we can observe a slight decrease in the proportion of triacylglycerols and phospholipids. Inclusion of 14C-bicarbonate in carbohydrates, proteins and lipids of Ch. vulgaris is significantly different both from the control group and from the group to which we added the investigated factors. However, the predominance of inclusion in lipids is 2–3 times higher than its inclusion into carbohydrates and 9–12 times higher in proteins. The increase of labeled bicarbonate inclusion intensity into carbohydrates occurs only in the case of joint action of sodium selenite and zinc ions, in proteins and lipids – in all cases of trace elemental activity. It was revealed that the general tendency is the reduction of the inclusion of bicarbonate in Ch. vulgaris triacylglycerols and its increase in phospholipids and nonetherified fatty acids, except for chromium ions, that modified the inclusion of the label into diacylglycerols, which may be due to the specific toxicity of the metal ions. The activation of lipogenesis after addition of selenium, zinc and chromium compounds was confirmed by an increase in the inclusion intensity of 14C-oleate in various classes of lipids that are present in chlorella and increased activity of glycerol-3-phosphatacyltransferase. Direction and regulation of lipid metabolism in Ch. vulgaris in the direction of increasing the amount and accumulation of lipids and their separate classes using sodium selenite in combination with Zn2+ and Cr3+ with the purpose of forming selenium-metal-lipid complexes can be used to obtain biologically active lipidous preparations enriched with essential microelements.

References

Abbas, C. A., & Card, G. L. (1980). The relationship between growth temperature, fatty acid composition and the physical state and fluidity of membrane lipids in Yersinia enterocolitica. Biochimica et Biophysica Acta, 602(3), 469–476.


Abd, E. B., & El-Baroty, G. S. (2013). Healthy benefit of microalgal bioactive substances. Journal of Aquatic Science, 1(1), 11–23.


Agatonovic-Kustrin, S., & Morton, D. W. (2013). Cosmeceuticals derived from bioactive substances found in marine algae. Oceanography, 1(2), 106.


Bellou, S., Baeshen, M. N., Elazzazy, A. M., Aggeli, D., Sayegh, F., & Aggelis, G. (2014). Microalgal lipids biochemistry and biotechnological perspectives. Biotechnology Advances, 32(8), 1476–1493.


Brownley, K. A., Boettiger, C. A., Young, L. A., & Cefalu, W. T. (2015). Dietary chromium supplementation for targeted treatment of diabetes patients with comorbid depression and binge eating. Medical Hypotheses, 85(1), 45–48.


Chen, B., Wan, C., Mehmood, M. A., Chang, J.-S., Bai, F., & Zhao, X. (2017). Manipulating environmental stresses and stress tolerance of microalgae for enhanced production of lipids and value-added products: Review. Bioresource Technology, 244, 1198–1206.


Chen, C. Y., & Chou, H. N. (2002). Screening of red algae filaments as a potential alternative source of eicosapentaenoic acid. Marine Biotechnology, 4(2), 189–192.


Chia, M. A., Lombardi, A. T., Gracё, M., Melro, G., & Parrish, C. C. (2013). Lipid composition of Chlorella vulgaris (Trebouxiophyceae) as a function of different cadmium and phosphate concentrations. Aquatic Toxicology, 128–129, 171–182.


Chirkova, T. V. (1997). Kletochnye membrany i ustoychivost rasteniy k stresssovym vozdeystviyam [Cell membranes and plant resistance to stress effects]. Soros Journal of Education, 9, 12–17 (in Russian).


Croft, M. T., Warren, M. J., & Smith, A. G. (2006). Algae need their vitamins. Eukaryotic Cell, 5(8), 1175–1183.


Dörmann, P. (2007). Lipid synthesis, metabolism and transport. In: R. R. Wise, & J. K. Hoober (Eds.). The structure and function of plastids. Springer, Dordrecht (Netherlands). Pp. 335–353.


Dyatlovitskaya, E. V., & Bezuglov, V. V. (1998). Lipidy kak bioeffektory [Lipids as bioeffectors]. Biochemistry, 63(1), 3–5 (in Russian).


El Gamal, A. A. (2010). Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1), 1–25.


Fernando, I. P., Kim, M., Son, K. T., Jeong, Y., & Jeon, Y. J. (2016). Antioxidant activity of marine algal polyphenolic compounds: A mechanistic approach. Journal of Medicinal Food, 19(7), 615–628.


Ganguly, R., Wen, A. M., Myer, A. B., Czech, T., Sahu, S., Steinmetz, N. F., & Raman, P. (2016). Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale, 8(12), 6542–6554.


Haq, I., Muhammad, A., & Hameed, U. (2014). Comparative assessment of Cladophora, Spirogyra and Oedogonium biomass for the production of fatty acid methyl esters. Applied Biochemistry and Microbiology, 50(1), 69–72.


Harnedy, P. A., & FitzGerald, R. J. (2011). Bioactive proteins, peptides, and amino acids from macroalgae. Journal Phycology, 47(2), 218–232.


Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91(6), 679–684.


Hokin, L. E., & Hexum, T. D. (1972). Studies on the characterization of the sodium – potassium transport adenosine triphosphatase: IX оn the role of phospholipids in the enzyme. Archives of Biochemistry and Biophysics, 151(2), 453-463.


Hua, Y., Clark, S., Ren, J., & Sreejayan, N. (2012). Molecular mechanisms of chromium in alleviating insulin resistance. The Journal of Nutritional Biochemistry, 23(4), 313–319.


Jain, S. K., Rains, J. L., & Croad, J. L. (2007). High glucose and ketosis (acetoacetate) increases, and chromium niacinate decreases, IL-6, IL-8, and MCP-1 secretion and oxidative stress in U937 monocytes. Antioxidants and Redox Signaling, 9, 1581–1590.


Kelly, A. A., Kalisch, B., Hölzl, G., Schulze, S., Thiele, J., Melzer, M., Dörmann, P. (2016). Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proceeding of the National Academy Science USA, 113(38), 10714–10719.


Khan, S. A., Rashmi, H., Mir, Z., Prasad, S., & Banerjee, U. C. (2009). Prospects of biodiesel production from microalgae in India. Renewable and Sustainable Energy Reviews, 13, 2361–2372.


Kim, S. K. (2013). Marine nutraceuticals: Prospects and perspectives. CRC Press, Boca Raton.


Kim, S., Kim, J., Lim, Y., Kim, Y. J., Kim, J. Y., & Kwon, O. (2016). A dietary cholesterol challenge study to assess Chlorella supplementation in maintaining healthy lipid levels in adults: A double-blinded, randomized, placebo controlled study. Nutrition Journal, 15, 54.


Köhrle, J., Brigelius-Flohé, R., Böck, A., Gärtner, R., Meyer, O., & Flohé, L. (2000). Selenium in biology: Facts and medical perspectives. Biological Chemistry, 381(9–10), 849–864.


Kostiuk, K. V., & Grubinko, V. V. (2012). Change of composition of the cellular membranes of the aquatic plants under the impact of toxic substances. Hydrobiological Journal, 48(4), 75–92.


Kreps, E. M. (1981). Lipidy kletochnyih membrane [Lipids of cell membranes]. Science, Leningrad (in Russian).


Kuznetsov, V. V., Kuznetsov, V. V., & Romanov, G. A. (Eds.). (2012). Molekulyarno-geneticheskie i biohimicheskie metody v sovremennoy biologii rasteniy [Molecular-genetic and biochemical methods in modern plant biology]. Binom, Moscow (in Russian).


Lee, H. S., & Kim, M. K. (2009). Effect of Chlorella vulgaris on glucose metabolism in Wistar rats fed high fat diet. Journal of Medicinal Food, 12(5), 1029–1037.


Lewis, R. N. A. H., & McElhaney, R. N. (2000). Surface charge markedly attenuates the nonlamellar phase-forming properties of lipid bilayer membranes: Calorimetric and 31P-nuclear magnetic resonance studies of mixtures of cationic, anionic, and zwitterionic lipids. Biophysical Journal, 79(3), 1455–1464.


Lu, Y., & Xu, J. (2015). Phytohormones in microalgae: A new opportunity for microalgal biotechnology? Trends in Plant Science, 20(5), 273–282.


Lukashiv, O. Y., Bodnar, O. I., Vinyarska, H. B., & Grubinko, V. V. (2016). Vplyv selen-khrom-lipidnoii substantsii iz Chlorella vulgaris Biej. na oksydatyvnyі status shchuriv [Effect of selenium-chromium-lipid substance on Chlorella vulgaris Biej. the oxidative status of rats]. Medical and Clinical Chemistry, 18(2), 28–33 (in Ukrainian).


Lutsiv, A. I., & Grubinko, V. V. (2012). Localization of the lipids' synthesis in Chlorella vulgaris under the impact of lead and zinc ions and diesel fuel. Hydrobiological Journal, 48(6), 95–106.


Lv, J.-M., Cheng, L.-H., Xu, X.-H., Zhang, L., & Chen, H.-L. (2010). Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technology, 101, 6797–6804.


Metzler, D. (2003). Biochemistry: The chemical reactions of living cells. Academic Press, New York-London.


Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Science, 15(2), 160–176.


Michalak, I., Chojnacka, K., & Saeid, A. (2017). Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 algal extracts. Molecules, 22(1), 66.


Morash, A. J., Bureau, D. P., & McClelland, G. B. (2009). Effects of dietary fatty acid composition on the regulation of carnitine palmitoyltransferase (CPT)I in rainbow trout (Oncorhynchus mykiss). Comparative Biochemistry and Physiology. Part B: Biochemistry and Molecular Biology, 152(1), 85–93.


Odjadjare, E. C., Mutanda, T., & Olaniran, A. O. (2017). Potential biotechnological application of microalgae: A critical review. Critical Reviews in Biotechnology, 37(1), 37–52.


Park, J. B., Craggs, R. J., & Shilton, A. N. (2011). Wastewater treatment high rate algal ponds for biofuel production. Bioresource Technolology, 102(1), 35–42.


Park, J. K. (2015). Algal polysaccharides: Properties and applications. Biochemistry and Analytical Biochemistry, 4, 176.


Perales-Vela, H. V., Pena-Castro, J. M., & Canizares-Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64, 1–10.


Prokhorova, M. I. (Ed.). (1982). Metody biokhimicheskikh issledovaniji (lipidnyji i energeticheskiji obmen) [Methods of biochemical studies (lipid and energy metabolism)]. Leningrad University Press, Leningrad (in Russian).


Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. A. (2008). Perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34(2), 77–88.


Richmond, A., & Hu, Q. (Еds.). (2013). Handbook of microalgal culture: Applied phycology and biotechnology. John Wiley & Sons Ltd., Oxford.


Romanenko, V. D. (Ed.). (2004). Osnovy gidroekologii [Fundamentals of hydroecology]. Geneza, Kyiv (in Ukrainian).


Rozentsvet, O. A., Murzaeva, S. V., & Gushchina, I. A. (2005). Rol’ membrannyh lipidov v ustoychivosti Potamogeton perfoliatus L. k izbyitku kadmiya v vode [The role of membrane lipids in the resistance of Potamogeton perfoliatus L. to excess of cadmium in water]. Biology Bulletin, 32(2), 232–239 (in Russian).


Ryu, N., Lim, Y., Park, J. E., Kim, J., Kim, J. E., Kwon, S. W., & Kwon, O. (2014). Impact of daily Chlorella consumption on serum lipid and carotenoid profiles in mildly hypercholesterolemic adults: A double-blinded, randomized, placebo-controlled study. Nutrition Journal, 13(1), 57.


Schmid, K. M., & Ohlrogge, J. B. (2008). Lipid metabolism in plants. In: D. E. Vance & J. E. Vance (Eds.). Biochemistry of lipids, lipoproteins and membranes. Elsevier Science B.V. Pp. 98–130.


Shalaby, E. A. (2011). Algae as promising organisms for environment and health. Plant Signaling Behavior, 6(9), 1338–1350.


Skrivan, M., Skrivanova, V., Dlouha, G., Branyikova, I., Zachleder, V., & Vitova, M. (2010). The use of selenium-enriched alga Scenedesmus quadriccauda in chicken diet. Czech Journal Animal Science, 55(12), 565–571.


Stefanik, M. B., Skorokhid, V. I., & Eliseeva, O. P. (1985). Tonkoslojinaya i gazozhydkostnaya chromatografiya lipidov [Thin-layer and gas-liquid chromatography of lipids]. LGU, Lvov (in Russian).


Tang, G., & Suter, P. M. (2011). Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1, 111–118.


Turnbull, A. P., Rafferty, J. B., Sedelnikova, S. E., Slabas, A. R., Schierer, T. P., Kroon, J. T., Rice, D. W. (2001). Analysis of the structure, substrate specificity, and mechanism of squash glycerol-3-phosphate (1)-acyltransferase. Structure, 9, 347–353.


Vaskovsky, V. E., Kostetsky, E. V., & Vasendin I. M. (1985). A universal reagent for phospholipids analysis. Journal of Chromatography, 114(1), 129–141.


Vigh, L., Horvath, I., & Thompson, G. A. (1988). Recovery of Dunaliella salina cells following hydrogenation of lipids in specific membranes by a homogeneous palladium catalyst. Biochimica et Biophysica Acta (BBA)–Biomembranes, 937(1), 42–50.


Vincent, J. B. (2013). Chromium: Is it essential, pharmacologically relevant, or toxic? Metal Ions Life Sciences, 13, 171–198.


Vovk, S. I., & Yanovich, V. G. (1988). Issledovanie sinteza belkov v tkanyakh selskokhozaistvennykh zhivotnykh (metodicheskie recomendatsii) [Investigation of protein synthesis in tissues of agricultural animals (guidelines)]. Unii, Lvov (in Russian).


Wang, L., Zhou, Q., & Chua, H. (2004). Contribution of cell outer membrane and inner membrane to Cu2+ adsorption by cell envelope of Pseudomonas putida 5-x. Journal of Environmental Science and Health Part A, 39(8), 2071–2080.


Widjaja, A., Chien, C.-C., & Ju, Y.-H. (2009). Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. Journal of the Taiwan Institute of Chemical Engineers 40(1), 13–20.


Wrobel, J. K., Power, R., & Toborek, M. (2016). Biological activity of selenium: Revisited. IUBMB Life, 68(2), 97–105.


Yang, J., Cao, J., Xing, G., & Yuan, H. (2015). Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresource Technology, 175, 537–544.

Published
2018-04-17
How to Cite
Bodnar, O. I., Kovalska, H. B., & Grubinko, V. V. (2018). Regulation of biosynthesis of lipids in Chlorella vulgaris by compounds of zinc, chromium and selenium. Regulatory Mechanisms in Biosystems, 9(2), 267-274. https://doi.org/10.15421/021839