The influence of light regime on the growth data and pigment composition of the plant Gentiana lutea cultured in vitro

Keywords: in vitro cultivation; morphogenesis; intensity of the flux; photosynthetically active radiation; radiation spectrum

Abstract

New technologies of reintroduction of plant species presuppose implementing both traditional and biotechnological methods for obtaining certain planting materials. However, plants cultivated in vitro exist in specific conditions that lead to changes in their structural and functional state. This explains why it is hard for them to adapt to ex vitro and in situ conditions. Therefore, there is a need for the development of a multistage method of cultivating in vitro plants that would make the influence on their adaptive mechanism in ex vitro and in situ conditions possible. One of its stages is the optimization of the light regime of cultivation which can both initiate the change of the state of the photosynthetic apparatus of plants and increase their bioproductivity stimulating the work of their protective system. This work studies changes in the morphogenesis, growth data and pigment composition of the rare species of Gentiana lutea L. of three populations in the Ukrainian Carpathian (mountains Pozhyzhevska and Sheshul-Pavlyk, plateau Lemska) in vitro focusing particularly on the cultivation light regime. The research has proved the inefficiency of using fluorescent lamps of daylight lamps (LD) type as source of illumination because the low intensity of luminous flux in the area of photosynthetically active radiation (PAR), as well as high proportion of wavelength of blue (400–500 nm) and green (500–600 nm) range in the spectrum cause specific reactions of photomorphogenesis, which, despite the high content of pigments in plastids, lead to poor development of root systems, stretching the stems, formation of small leaves with thin leaflet plate, generally low productivity and low adaptive potential of G. lutea plants to ex vitro and in situ conditions. Complement of cold white light lamps to the fluorescent lamps LD type in the ratio of 1 : 1 enables one to increase the intensity of illumination in the field of PAR and raise the fraction of wavelength of red range (600–700 nm). Such light conditions both improve the bio-productivity of G. lutea plants of all three populations cultured in vitro in comparison to the LD type regimen, reducing the content of chlorophyll b and carotenoids in light-harvesting complexes of photosystems and facilitate an increase in the microclonal multiplication factor without using higher concentrations of exogenous growth regulators,which significantly reduces the cost of the process of obtaining planting materials. It was proved that a combination of LD type lamps, cold white light lamps and phytolamps in the ratio 1 : 1 : 0.6 should be used on the final stages of preparation of the planting material of G. lutea before transferring it to ex vitro and in situ conditions. This relates to the fact that the increase of the wavelength of the red range results in the widening of the active surface of the leaves, rise in the content of photosynthetic pigments, and the noticeable growth of the aboveground and underground parts of the plants. The article assumes that the use of such illumination mode will ensure a faster transition of cultured in vitro G. lutea plants from heterotrophic to autotrophic nutrition, improving their adaptive potential and enabling easier adaptation to non-sterile ex vitro and in situ conditions.

References

Bailey, S., Horton, P., & Walters, R. G. (2004). Acclimation of Arabidopsis thaliana to the light environment: The relationship between photosynthetic function and chloroplast composition. Planta, 218, 793–802.


Banas, A. K., & Gabrys, H. (2007). Influence of sugars on blue light-induced chloroplast relocations. Plant Signaling and Behavior, 2(4), 221–230.


Bao, Y., Aggarwal, P., Robbins II, N. E., Sturrock, C. J., Thompson, M. C., Tan, H. Q., Tham, C., Duan, L., Rodriguez, P. L., Vernoux, T., Mooney, S. J., Bennett, M. J., & Dinneny, J. R. (2014). Plant roots use a patterning mechanism to position lateral root branches toward available water. Proceedings of the National Academy of Sciences of the United States of America, 111(25), 9319–9324.


Belokurova, V. B. (2010). Methods of biotechnology in system of efforts aimed at plant biodiversity preservation (Review). Cytology and Genetics, 44(3), 174–185.


Bidl, K. L. (1989). Fotosintez i bioproduktivnost': Metody opredelenija [Photosynthesis and bioproductivity: Methods of determination]. Ahropromizdat, Moscow (in Russian).


Bisht, S. S., Bisht, A. S., & Chauhan, R. S. (2017). In-vitro mutagenesis induction to improve abiotic stress in tissue cultured plantlet of Picrohiza kurroa Royle ex. Benth: An endangered plant of Western Himalayas, India. Medicinal and Aromatic Plants, 6(2), 287.


Burney, D. A., & Burney, L. P. (2007). Paleoecology and “inter-situ” restoration on Kaua’i, Hawai’i. Frontiers in Ecology and the Environment, 5, 483–490.


Caffarri, S., Passarini, F., Bassi, R., & Croce, R. (2007). A specific binding site for neoxanthin in the monomeric antenna proteins CP26 and CP29 of Photosystem II. FEBS Letters, 581(24), 4704–4710.


Cope, K. R., & Bugbee, B. (2013). Spectral effects of three types of white light-emitting diodes on plant growth and development: Absolute versus relative amounts of blue light. HortScience, 48(4), 504–509.


Cruz-Cruz, C. A., González-Arnao, M. T., & Engelmann, F. (2013). Biotechnology and conservation of plant biodiversity. Resources, 2, 73–95.


Dingenen, J. V., De Milde, L., Vermeersch, M., Maleux, K., De Rycke, R., De Bruyne, M., Storme, V., Gonzalez, N., Dhondt, S., & Inze, D. (2016). Chloroplasts are central players in sugar-induced leaf growth. Plant Physiology, 171(1), 590–605.


Dong, C., Fu, Y., Liu, G., & Liu, H. (2014). Low light intensity effects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at different growth stages in BLSS. Advances in Space Research, 53, 1557–1566.


Dou, H., Niu, G., Gu, M., & Masabni, J. G. (2017). Effects of light quality on growth and phytonutrient accumulation of herbs under controlled environments. Horticulturae, 3(2), 36.


Drobyk, N. M., Grytsak, L. R., Mel’nyk, V. М., Kravets, N. B., Konvalyuk, I. I., Twardovska, M. O., & Kunakh, V. A. (2015). In vitro manipulation and propagation of Gentiana L. species from the Ukrainian Flora. In: The Gentianaceae – Volume 2: Biotechnology and Applications. Springer, Berlin, Heidelberg, 45–79.


Folta, K. M., & Childers, K. S. (2008). Light as a growth regulator: Controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience, 43(7), 1957–1964.


Folta, K. M., & Maruhnich, S. A. (2007). Green light: A signal to slow down or stop. Journal of Experimental Botany, 58(12), 3099–3111.


Franklin, K. A., Larner, V. S., & Whitelam, G. C. (2005). The signal transducing photoreceptors of plants. The International Journal of Developmental Biology, 49, 653–664.


Golovatskaya, I. F. (2005). The role of cryptochrome 1 and phytochromes in the control of plant photomorphogenetic responses to green light. Russian Journal of Plant Physiology, 52(6), 822–829.


Gong, J., Zhang, Z., Zhang, C., Zhang, J., & Ran, A. (2018). Ecophysiological responses of three tree species to a high-altitude environment in the southeastern tibetan plateau. Forests, 9(2), 48.


Govorov, P. P., Velyt, I. A., Shchyrenko, V. V., & Pylypchuk, R. V. (2011). Dzherela svitla dlja vyroshhuvannja ovochiv v umovah zakrytogo g'runtu [Lamp surfaces for vegetables in conditions of suspended soil]. Dzhura, Ternopil' (іn Ukranian).


Gururani, M. A., Venkatesh, J., & Tran, L. S. (2015). Regulation of photosynthesis during abiotic stress-induced photoinhibition. Molecular Plant, 8(9), 1304–1320.


Havaux, M., Bonfils, J. P., Lütz, C., & Niyogi, K. K. (2000). Photodamage of the photosynthetic apparatus and its dependence on the leaf developmental stage in the npq1 Arabidopsis mutants deficient in the xanthophyll cycle enzyme violaxanthin de-epoxidase. Plant Physiology, 124(1), 273–284.


Hogewoning, S. W., Wientjes, E., Douwstra, P., Trouwborst, G., van Ieperen, W., Croce, R., & Harbinson, J. (2012). Photosynthetic quantum yield dynamics: From photosystems to leaves. The Plant Cell, 24(5), 1921–1935.


Hrytsak, L. R., Melnyk, V. M., Konvaliuk, I. I., Kravets, N. B., Mosula, M. Z., & Drobyk, N. M. (2017). Mikroklonal'ne rozmnozhennja vydiv rodu Gentiana L. flory Ukrai'ny [Microclonal propagation of Gentiana L. species from the Ukrainian flora]. Scientific Issues Ternopil Volodymyr Hnatiuk National Pedagogical University. Series Biology, 1(68), 74–82 (іn Ukranian).


Kabashnikova, L. F. (2011). Fotosinteticheskij apparat i potencial hlebnyh zlakov [Photosynthetic apparatus and the potential of cereals]. Belorusskaja nauka, Mіnsk (in Russian).


Kaiserli, E., & Chory, J. (2016). The role of phytochromes in triggering plant developmental transitions. In: eLS. John Wiley & Sons Ltd, Chichester.


Karnachuk, R. A., Negretskii, V. A., & Golovatskaya, I. F. (1990). Gormonal'nyj balans lista rastenij na svetu raznogo spektral'nogo sostava [Hormonal balance in the plant leaf under light differing in quality]. Russian Journal of Plant Physiology, 37(3), 527–534 (in Russian).


Keziah, S. M., & Devi, C. S. (2017). Essentials of conservation biotechnology: A mini review. IOP Conference Series: Materials Science and Engineering, 263, 022047.


Kiran, G., Venugopal, R. B., Jabeen, F. T. Z., Kaviraj, C. P., & Srinath, R. (2004). Rapid regeneration of Mentha piperita L. from shoot tip and nodal explants. Indian Jounal of Biotecnology, 3, 594–598.


Kobiv, Y., Prokopiv, A., Nachychko, V., Borsukevych, L., & Helesh, M. (2017). Distribution and population status of rare plant species in the Marmarosh Mountains (Ukrainian Carpathians). Ukrainian Botanical Journal, 74(2), 163–176.


Kodun-Ivanova, M. A. (2017). Pokazateli vodnogo stressa mikroklonal'no razmnozhennyh rastenij osiny Populus tremula pri ih vyrashhivanii v uslovijah ex vitro [Indicators of water-stress of microclonal aspen Populus tremula to the ex vitro conditions]. Trudy Belarusian State Technological University, 1(2), 146–155.


Kramer, F. T., & Havens, K. (2009). Plant conservation genetics in changing world. Trends in Plant Science, 14(11), 599–607.


Kucherjavyi, V. P., Mokryj, V. I., Shymkiv, O. B., Bashuc'ka, U. B., Bejnc, S., & Viljem, B. (2003). Diagnostyka ta optymizacija bio-naturoju stijkosti fitomeliorantiv devastovanyh landshaftiv [Diagnostic and optimisation by bio-natura of vitality of phytomeliorant of devastated landscape]. Scientific bulletin of UNFU, 13(5), 303–307 (іn Ukranian).


Kuster, V. C., De Castro, S. A. B., & Vale, F. H. A. (2016). Photosynthetic and anatomical responses of three plant species at two altitudinal levels in the Neotropical savannah. Australian Journal of Botany, 64(8), 696–703.


Lau, O. S., & Deng, X. W. (2010). Plant hormone signaling lightens up: Integrators of light and hormones. Current Opinion in Plant Biology, 13(5), 571–577.


Leong, T. Y., & Anderson, J. M. (1984). Adaptation of the thylakoid membranes of pea chloroplast to light intensities. I. Study on the distribution of chlorophyll-protein complexes. Photosynthesis Research, 5(2), 105–115.


Lichtenthaler, H. K., Marek, A. A., Kalina, M. V., & Urban, O. J. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry, 45(8), 577–588.


Ling, Q., & Jarvis, P. (2015). Functions of plastid protein import and the ubiquitin-proteasome system in plastid development. Biochimica et Biophysica Acta (BBA) – Bioenergetics, 1847(9), 939–948.


Margitay, L. (2006). Osoblyvosti vmistu fotosyntezujuchyh pigmentiv u roslyn introdukovanyh vydiv rodiv Sedum L. i Crassula L. [Features of the content of photosynthetic pigments in plants of introduced species of genera Sedum L. and Crassula L.]. Bulletin Taras Shevchenko National University of Kyiv. Series Introduction and Conservation of Plant Diversity, 10, 38–40 (іn Ukranian).


Maschinski, J., & Albrecht, M. A. (2017). Center for plant conservation's best practice guidelines for the reintroduction of rare plants. Plant Diversity, 39(6), 390–395.


Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K., & Kurata, K. (2007). Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. Soil Science and Plant Nutrition, 53(4), 459–465.


Mayorova, O. Y., Hrytsak, L. R., & Drobyk, N. M. (2015a). The strategy of Gentiana lutea L. рopulations in the Ukrainian Carpathians. Russian Journal of Ecology, 46(1), 43–50.


Mayorova, O. Y., Hrytsak, L. R., & Drobyk, N. M. (2015b). Adaptation of Gentiana lutea L. plants obtained in vitro to ex vitro and in situ condition. Biotechnologia Acta, 8(6), 77–86.


Mezhuts, B. K. (2009). Primenenie dimetilsul'foksida v kachestve rastvoritelja fotosinteticheskih pigmentov v polevyh issledovanijah [Application of dimethylsulfoxide as a solvent of photosynthetic pigments in field investigations]. Bulletin of State Agrarian University of Armenia, 3, 40–44 (in Russian).


Murashige, T., & Skoog, F. A. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiologia Plantarum, 15(3), 473−497.


Nemoykina, A. L., & Karnachuk, R. A. (2002). Sovmestnoe dejstvie sveta raznogo spektral'nogo sostava i jekzogennyh gormonov na mezostrukturu Yucca elephantipes R. v kul'ture in vitro [The combined action of light of different spectral composition and exogenous hormones on the Yucca elephantipes R. mesostructure in vitro culture]. Journal Investigated in Russia, 174, 1930–1937 (in Russian).


Oceania, C., Doni, T., Tikendra, L., & Nongdam, P. (2015). Establishment of efficient in vitro culture and plantlet generation of tomato (Lycopersicon esculentum Mill.) and development of synthetic seeds. Journal of Plant Sciences, 10(1), 15–24.


Ouzounis, T., Rosenqvist, E., & Ottosen, C.-O. (2015). Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience, 50(8), 1128–1135.


Rossi, M., Fisogni, A., & Galloni, M. (2016). Biosystematic studies on the mountain plant Gentiana lutea L. reveal variability in reproductive traits among subspecies. Plant Ecology and Diversity, 9(1), 97–104.


Rybchenko, L. S., & Savchuk, S. V. (2015). Potencial gelioenergetychnyh klimatychnyh resursiv sonjachnoi' radiacii' v Ukrai'ni [Potential of the climatic solar radiation energy resources in Ukraine]. Ukrainian Geographical Journal, 4, 16–23 (in Ukrainian).


Sáez, P. L., Bravo, L. A., Sáez, K. L., Sánchez-Olate, M., Latsague, M. I., & Ríos, D. G. (2012). Photosynthetic and leaf anatomical characteristics of Castanea sativa: A comparison between in vitro and nursery plants. Biologia Plantarum, 56(1), 15–24.


Sarasan, V., Cripps, R., Ramsay, M. M., Atherton, C., McMichen, M., Prendergast, G., & Rowntree, J. K. (2006). Conservation in vitro of threatened plants-progress in the past decade. In Vitro Cellular and Developmental Biology – Plant, 42(3), 206–214.


Schöttler, M. A., & Tóth, S. Z. (2014). Photosynthetic complex stoichiometry dynamics in higher plants: Environmental acclimation and photosynthetic flux control. Frontiers in Plant Science, 5, 188.


Strashniuk, N. M., Hrytsak, L. R., Leskova, O. M., & Melnyk, V. M. (2004). Vvedennja v kul'turu in vitro dejakyh vydiv rodu Gentiana L. [Introduction to the in vitro culture of some species of genus Gentiana L.]. Physiology and biochemistry of cultivated plants, 36(4), 327–334 (іn Ukranian).


Sun, Y., & Zerges, W. (2015). Translational regulation in chloroplasts for development and homeostasis. Biochimica et Biophysica Acta, 1847(9), 809–820.


Syvash, O. O., Fomishyna, R. N., Zaharova, T. O., & Zolotar'ova, E. K. (2016). Hhlorofilazna aktyvnist' i pigmentnyj sklad lystkiv roslyn riznyh jarusiv shyrokolystjanogo lisu [Chlorophyllase activity and pigment composition in leaves of forest plants of different layers of broad-leaved forest]. The Bulletin of Kharkiv National Agrarian University. Series Biology, 2(38), 75–83 (in Ukrainian).


Tanada, T. (1984). Interaction of green or red light with blue light on the dark closure Albizzia pinnules. Physiologia Plantarum, 61(1), 35–37.


Velyt, I. A., & G'uzyk, D. V. (2013). Vybir dzherel svitla dlja optychnogo oprominennja roslyn tomativ, ogirkiv ta rozsady [Selection of light sources for optical irradiation of plants of tomatoes, cucumbers and seedlings]. Control, Navigation and Communication Systems, 25, 128–132 (іn Ukranian).


Viazov, E. V., & Shalyho, N. V. (2016). Aktivnost' fotosinteticheskogo apparata i zashhitnaja sistema rastenij ogurca (Cucumis sativus L.) pri uzkopolosnom osveshhenii razlichnogo spektral'nogo sostava [Photosynthetic аpparatus and defense system of cucumber (Cucumis sativus L.) plants under led lighting of different spectral composition]. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences, 4, 19–26 (in Russian).


Vicente, C., & Garcia, I. (1981). Decrease in phytochrome pelletability induced by green + far-red light in Trifolium repens. Biochemical and Biophysical Research Communication, 100(1), 17–22.


Volis, S., & Blecher, M. (2010). Quasi in situ: A bridge between ex situ and in situ conservation of plants. Biodiversity and Conservation, 19(9), 2441–2454.


Voskresenskaya, N. P. (1987). Fotoreguljatornye reakcii i aktivnost' fotosinteticheskogo apparata [Photoregulatory reactions and activity of the photosynthetic apparatus]. Russian Journal of Plant Physiology, 34(4), 669–684 (in Russian).


Walters, R. G. (2005). Towards an understanding of photosynthetic acclimation. Journal of Experimental Botany, 56(411), 435–447.


Wang, H., & Deng, X. W. (2002). Phytochrome signaling mechanism. In: The Arabidopsis book, 3. The American Society of Plant Biologists, Rockville.


Zavoruev, V. V., & Zavorueva, E. N. (2011). Fluorescencija list'ev topolej, rastushhih vblizi avtomobil'nyh dorog [Fluorescence of poplar leaves growing near highways]. Atmospheric and Oceanic Optics, 24(5), 437–440 (in Russian).

Published
2018-08-13
How to Cite
Hrytsak, L. R., Herts, A. I., Nuzhyna, N. V., Cryk, M. M., Shevchenko, V. V., & Drobyk, N. M. (2018). The influence of light regime on the growth data and pigment composition of the plant Gentiana lutea cultured in vitro. Regulatory Mechanisms in Biosystems, 9(2), 258-266. https://doi.org/10.15421/021838