Determination of antimicrobial activity of some 1,2,4-triazole derivatives

Keywords: derivatives of 1,2,4-triazole; Trifuzol; Avistim; antibacterial activity; antiviral activity

Abstract

We carried out MIC of the derivatives of 1,2,4-triazole II (4-((5-nitrofuran-2-yl)methyleneamino)-1-propyl-4H-1,2,4-triazolium bromide) and I (N-((5-nitrofuran-2-yl)methylene)-4H-4-amino-1,2,4-triazolidium chloride) against Escherichia coli ATCC 3912/4 and E. coli k88ad, Staphylococcus aureus ATCC 25923 and S. aureus k99, Klebsiella pneumonia k56 and Salmonella typhimurium 144, S. enteritidis. All test cultures were sensitive to compound II at concentrations of 1,25–0,039 μg/ml. Similar MIC (0,039 μg/ml) of compounds II and I were set for E. coli k88a and S. aureus k99 test cultures – 0,156 μg/ml. Only S. aureus ATCC 25923 and K. pneumonia k56 had sensitivity to ceftriaxone (MIC = 0,097 μg/ml). Antiviral activity of Trifuzol (piperidine 2-[5-(furan-2-il)-4-phenil-1,2,4-triazol-3-ilthio]acetate) and avistim (morpholines 3-(4-pyridyl)-1,2,4-triazolil-5-thioacetate) against the chicken infectious bronchitis virus (VIB) strain 4/91 was characterized by a decrease in mortality and pathological changes of chicken embryos (CE) which were induced by the virus. Death of infected CE provoked by the strain 4/91 of VIB in dilution 10–3 occurred at 57.1%. The reduction in the percentage of deaths of CE infected by the virus in dilution 10–3 in the presence of Avistim was 28.6%, and with Trifuzol 14.3%. The use of avistim and Trifuzol compounds reduced VIB infectious activity when it was cultivated in CE, reducing the titre of the virus (strain 4/91) by 3 lg EID 50 cm–3.

References

Abo-Bakr, A. M. (2014). Synthesis and antibacterial activity of some new func tionalized derivatives of 4-amino-5-benzyl-4H-[1,2,4]-triazole-3thion. Inter national Journal of Science and Research, 3(11), 15–23.


Alrawashdeh, M. S. (2008). Vplyv preparatu VPK-108 na cyliarnu aktyvnist’ epiteliyu kuryachoyi traxeyi, infikovanoyi virusom infekcijnoho bronxitu kurej [Influence of the preparation VPK-108 on the ciliary activity of the epithelium of the chicken trachea, infected by the virus of infectious chicken bronchitis]. Collection of Scientific Works of the Lugansk National Agrarian University, 92, 4–8 (in Ukrainian).


Asif, M. (2015). Antiviral and antiparasitic activities of various substituted triazole derivatives: A mini review. Chemistry International, 1(2), 71–80.


Bektaş, H., Karaali, N., Şahin, D., Demirbaş, A., Karaoglu, Ş. A., & Demirbaş, N. (2010). Synthesis and antimicrobial activities of some new 1,2,4-triazole derivatives. Molecules, 15(4), 2427–2438.


Bessarabov, B. F. (2010). Otsenka kachestva yaits selskochozyaystvennoi ptitsy [Evaluation of the egg quality in poultry]. Moscow State Academy of Veteri nary Medicine and Biotechnology named after K. I. Scriabin, Moscow (in Russian).


Cao, X., Wang, W., Wang, S., & Bao, L. (2017). Asymmetric synthesis of novel triazole derivatives and their in vitro antiviral activity and mechanism of action. European Journal of Medicinal Chemistry, 139, 718–725.


Chen, Z., Xu, W., Liu, K., Yang, S., Fan, H., Bhadury, P. S., Hu, D.-Y., & Zhang, Y. (2010). Synthesis and antiviral activity of 5-(4-chlorophenyl)-1,3,4-thiadiazo le sulfonamides. Molecules, 15(12), 9046–9056.


Clinical and Laboratory Standards Institute (2006). Methods for dilution antimicro bial susceptibility tests for bacteria that grow aerobically. Approved standard, 7th ed. CLSI, Wayne, PA, USA.


Clinical and Laboratory Standards Institute (2015). Verification of commercial microbial identification and antimicrobial susceptibility testing systems. CLSI, Wayne, PA, USA.


Dal Pozzo, F., & Thiry, E. (2014). Antiviral chemotherapy in veterinary medicine: Current applications and perspectives. Scientific and Technical Review of the Office International des Epizooties (Paris), 33(3), 791–801.


Danilchenko, D. M., & Parchenko, V. V. (2017). Antimicrobial activity of new 5-(furan-2-yl)-4-amino-1,2,4-triazole- 3-thiol derivatives. Zaporozhye Medical Jourmal, 19(1), 105–107 (in Ukrainian).


de Oliveira, C. S., Lira, B. F., Barbosa-Filho, J. M., Lorenzo, J. G. F., & de Athayde-Filho, P. F. (2012). Synthetic approaches and pharmacological activity of 1,3,4-oxadiazo les: A review of the literature from 2000–2012. Molecules, 17(9), 10192–10231.


Diadichkina, L. F., Pozdniakova, N. S., & Holovatskikh, O. V. (2010). Rukovod stvo po biologcheskomu kontroliu pri inkubatsii yaits selskochoziaistvennoi ptitsy [Guidelines for biological control during egg incubation in agricultural poultry]. RSRUTU of Poultry, Sergiev Posad (in Russian).


Fotina, G. A., & Fotina, T. I. (2015). Application of the immunomodulator "Aves stim TM" in the conditions of the farm for the cultivation of geese. Visnyk of Zhytomyr National Agroecological University, 44, 78–83 (in Ukrainian).


Gehlen, H., & Schade, W. (1964). l,2,4-Triazolin-5-ones. IV. Formation of l,2,4-triazolin-5ones from substituted acylsemicarbazides. Justus Liebigs Annalen der Chemie, 675(1), 180–188.


Gross, A. E., & Bryson, M. L. (2015). Oral ribavirin for the treatment of noninflu enza respiratory viral infections. Annals of Pharmacotherapy, 49(10), 1125–1135.


Krajczyk, A., Kulinska, K., Kulinski, T., Hurst, B. L., Craig, W. D., Smee, D. F., Ostrowski, T., Januszczyk, P. (2014). Antivirally active ribavirin analogues – 4,5-disubstituted 1,2,3-triazole nucleosides: Biological evaluation against certain respiratory viruses and computational modeling. Antiviral Chemistry and Chemotherapy, 23, 161–171.


Malladi, S., Isloor, A. M., Isloor, S., Akhila, D. S., & Fun, H.-K. (2013). Synthesis, characterization and antibacterial activity of some new pyrazole based Schiff bases. Arabian Journal of Chemistry, 6(3), 335–340.


Malladi, S., Venkata Nadh, R., Suresh Babu, K., & Suri Babu, P. (2017). Synthe sis and antibacterial activity studies of 2,4-di substituted furan derivatives. Beni-Suef University Journal of Basic and Applied Sciences, 6(4), 345–354.


Mavrova, A. T., Wesselinova, D., Tsenov, Y. A., & Denkova, P. (2009). Synthe sis, cytotoxicity and effects of some1,2,4-triazole and 1,3,4-thiadiazole derivatives on immunocompetent cells. European Journal of Medicinal Chemistry, 44, 63–69.


Musser, J. M. B., Heatley, J. J., Koinis, A. V., Suchodolski, P. F., Guo, J., Eskandon, P., Tisard, I. R. (2015). Ribavirin inhibits parrot bornavirus 4 replication in cell culture. PLoS One, 10(7), e0134080.


Ognik, K., & Sembratovith, I. (2009). Influence of synthesized 5-oxo-1,2,4-triazine derivative on some immunological and hematological indices of turkey. Journal of Applied Animal Research, 36(2), 235–237.


Parchenko, V. V. (2011). Antivirusnaya aktivnost’ proizvodnyh 1,2,4-triazola [Antiviral activity of 1,2,4-triazole derivatives]. Pharmaceutical Journal, 2011, 49–53 (in Ukrainian).


Patel, J. B., Sharp, S., & Novak-Weekley, S. (2013). Verification of antimicrobial susceptibility testing methods: A practical approach. Clinical Microbiology Newsletter, 35(13), 103–109.


Pattan, S. R., Gadhave, P., Tambe, V., Dengale, S., & Thakur, D. (2012). Synthe sis and evaluation of some novel 1,2,4-triazole derivatives for antimicrobial, anti-tubercular, anti-inflammatory activities. Indian Journal of Chemistry, 51B, 297–301.


Plech, T., Wujec, M., Kosikowska, U., Malm, A., Rajtar, B., Palz-Dacewitcz, M. (2013). Synthesis and in vitro activity of 1,2,4-triazole ciprofloxacin hybrids against drug-susceptible and drug-resistant bacteria. Europen Journal of Medicinal Chemistry, 60, 128–134.


Popiołek, Ł., Kosikowska, U., Mazur, L., Dobosz, M., & Malm, A. (2013). Syn thesis and antimicrobial evaluation of some novel 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Medicinal Chemistry Research, 22(7), 3134–3147.


Sahu, J. K., Ganguly, S., & Kaushik, A. (2014). Synthesis of some novel hetero cyclic 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives as possible antimic robial agents. Journal of Applied Pharmaceutical Science, 4(2), 81–86.


Seelam, N., Shrivastava, S. P., & Prasanthi, S. (2016). Supriya gupta synthesis and in vitro study of some fused 1,2,4-triazole derivatives as antimycobacterial agents. Journal of Saudi Chemical Society, 20, 411–418.


Siddiqui, N., Ahsan, W., Alam, M. S., Ali, R., Jain, S., Azad, B., Akhtar, J. (2011). Triazoles: As potential bioactive agents. International Journal of Pharmaceu tical Sciences Review and Research, 8(1), e029.


Sinha, J., & Kadawla, M. (2017). Triazoles as antimicrobial: A review. Internatio nal Journal of Chemical Studies, 5(2), 1–7.


Thomas, E., Ghany, M. G., & Liang, T. J. (2012). The application and mechanism of action of ribavirin in therapy of hepatitis C. Antiviral Chemistry and Chemotherapy, 23, 1–12.


Varynskyi, B. O., Knysh, Y. G., Parchenko, V. V., & Panasenko, O. I. (2015). Quantitative analisis of piperidin-1-ium((5-(2-furyl)-4-phenyl-4H-1,2,4-triazol-3yl)thio)acetate, substance of veterinary drug “Tryfuzol”, in poultry meat by LC-DAD-MS. Aktualni Pytannia Farmatsevtychnoji i Medychnoji Nauky ta Praktyky, 18, 25–31.


Wahi, A. K., Singh, A., & Singh, A. K. (2011). Determination of minimum inhi bitory concentration (mic) of some novel triazole derivative. Іnternational Journal of Research in Pharmacy and Chemistry, 1(4), 1108–1114.


Wang, Y., & Zhou, C. H. (2011). Recent advances in the researches of triazole compounds as medicinal drugs. Scientia Sinica Chemica, 41, 1429–1456.


Zoumpoulakis, P., Camoutsis, C., Pairas, G., Pitsas, A. (2012). Synthesis of novel sulfonamide-1,2,4-triazoles, 1,3,4-thiadiazoles and 1,3,4-oxadiazoles, as poten tial antibacterial and antifungal agents. Biological evaluation and conforma tional analysis studies. Bioorganic and Medicinal Chemistry, 20(4), 1569–1583.

Published
2018-04-30
How to Cite
Alrawashdeh, M. S. M. (2018). Determination of antimicrobial activity of some 1,2,4-triazole derivatives. Regulatory Mechanisms in Biosystems, 9(2), 203-208. https://doi.org/10.15421/021830