New finding of green algae with potential for algal biotechnology, Chlorococcum oleofaciens and its molecular investigation

Keywords: Chlorococcum oleofaciens, 18S rDNA, rbcL, ITS2, molecular phylogeny, morphology

Abstract

The practice of soil algology shows that algae from the order Chlamydomonadales are among the most poorly studied and difficult to identify due to the high heterogeneity of their morphology and ultrastructure. Only the involvement of molecular genetic methods usually makes it possible to determine their taxonomic status with high accuracy. At the same time, in the algae flora of Ukraine there are more than 250 species from the order Chlamydomonadales, the status of which in most cases is established exclusively on the basis of light microscopy. This work is devoted to the study of the biotechnologically promising green alga Chlorococcum oleofaciens, taking into account the modern understanding of its taxonomic status. Two new strains of this species, separated from samples of forest litter and oak forest soil (the Samara Forest, Dnipropetrovsk region), are described. The strains were studied at the morphological level by using light microscopy methods, as well as using molecular genetic methods based on the studies of the nucleotide genes sequences of the 18S ribosomal DNA (rDNA) and chloroplast rbcL genes, the topology of secondary structures of internal transcribed spacer 2 (ITS2). The obtained results helped to confirm the presence of C. oleofaciens in the algae flora of Ukraine. Also, the authors of the article discuss the differences in the secondary structure of ITS2 in different strains of C. oleofaciens associated with the presence of compensatory base change (CBC), hemi-CBC in helices I and II, as well as deletions in helix IV and providing a basis for the hypothesis of the existence of cryptic species within C. oleofaciens. The obtained data can be used at the stage of preliminary selection of biochemical research objects. 

References

Abomohra, A. E.-F., Wagner, M., El-Sheekh, M., & Hanelt, D. (2012). Lipid and total fatty acid productivity in photoautotrophic fresh water microalgae: Screening studies towards biodiesel production. Journal of Applied Phycology, 25(4), 931–936.

Andreeva, V. М. (1998). Pochvennyie i aerofilnyie zelenyie vodorosli (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales) [Soil and aerophilic green algae (Chlorophyta: Tetrasporales, Chlorococcales, Chlorosarcinales)]. Nauka, St. Petersburg (in Russian).

Byun, Y., & Han, K. (2009). PseudoViewer3: Generating planar drawings of large-scale RNA structures with pseudoknots. Bioinformatics, 25, 1435–1437.

Caisová, L., Marin, B., & Melkonian, M. (2013). A consensus secondary structure of ITS2 in the Chlorophyta identified by phylogenetic reconstruction. Protist, 164, 482–496.

Cherevko, S. P. (1993). Pochvennyie vodorosli lesnyih biogeotsenozov podzonyi nastoyaschih stepey Ukrainyi [Soil algae of forest phytocoenoses from true steppe subzone of Ukraine]. Algology, 3(2), 49–52 (in Russian).

Cherevko, S. P., & Maltseva, I. A. (1995). Vodorosli pochv lesnyh biogeotsenozov Prisamarya Dneprovskogo i drevesnyih nasazhdeniy Zapadnogo Donbassa [Soil algae of forest biogeocenoses from Dnieper Prisamarye and woody plantings of Western Donbass]. Monitoring of biogeocenotic in the steppe zone. Interuniversity collection of scientific works, 64–67 (in Russian).

Cojocarut, M., Shlosberg, M., Dubinsky, Z., & Finkel, A. (1988). Gas chromatographic/mass spectrometric analysis of fatty acids found in aquatic algae. Biomedical and Environmental Mass Spectrometry, 16, 477–480.

Coleman, A. W. (2003). ITS2 is a double-edged tool for eukaryote evolutionary comparisons. Trends in Genetics, 19(7), 370–375.

Coleman, A. W. (2009). Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Molecular Phylogenetics and Evolution, 50, 197–203.

Del Río, E., Armendáriz, A., García-Gómez, E., García-González, M., & Guerrero, M. G. (2015). Continuous culture methodology for the screening of microalgae for oil. Journal of Biotechnology, 195, 103–107.

Del Río, E., García-Gómez, E., Moreno, J., Guerrero, M. G., & García-González, M. (2017). Microalgae for oil. Assessment of fatty acid productivity in continuous culture by two high-yield strains, Chlorococcum oleofaciens and Pseudokirchneriella subcapitata. Algal Research, 23, 37–42.

Ettl, H., & Gärtner, G. (1988). Chlorophyta II. Tetrasporales, Chlorococcales, Gloeodendrales. In: Ettl, H., Gerloff, J., Heynig, H. & Mollenhauer, D. (Eds.). Süßwasserflora von Mitteleuropa, 10. Gustav Fischer, Jena.

Ettl, H., & Gärtner, G. (1995). Syllabus der Boden-, Luft- und Flechtenalgen. Gustav Fischer, Stuttgart.

Ettl, H., & Gärtner, G. (2014). Syllabus der Boden-, Luft- und Flechtenalgen, 2nd edn. Springer Spektrum, Berlin.

Friedl, T. (1997). The evolution of the Green Algae. Plant Systematics and Evolution, 11, 87–101.

Fucíková, K., Lewis, P. O., & Lewis, L. A. (2014). Widespread desert affiliation of trebouxiophycean algae (Trebouxiophyceae, Chlorophyta) including discovery of three new desert genera. Phycological Research, 62, 294–305.

Guillard, R. R. L., & Lorenzen, C. J. (1972). Yellow-green algae with chlorophyllide c. Journal of Phycology, 8, 10–14.

Katoh, K., & Toh, H. (2010). Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics, 26, 1899–1900.

Kawasaki, Y., Nakada, T., & Tomita, M. (2015). Taxonomic revision of oil-producing green algae, Chlorococcum oleofaciens (Volvocales, Chlorophyceae), and its relatives. Journal of Phycology, 51, 1000–1016.

Kostikov, I., Romanenko, P., Demchenko, E., Dariyenko, T., Mikhailyuk, T., Rybczynski, A., & Solonenko, A. (2001). Vodorosti gruntiv Ukrainy (Istoriia i metody doslidzhennia, systema, konspekt flory) [Soil algae of Ukraine (history and methods of research, system, synopsis of flora)]. Phytosociocentr, Kyiv (in Ukrainian).

Maltsev, Y. (2015). Alhouhrupovannia riznykh bioheotsenotychnykh horyzontiv Staro-Berdianskoho lisu [Algae communities of different biogeocenotic horizons in Staro-berdyansk forest]. The Bulletin of Kharkiv National Agrarian University. Series Biology, 2(35), 87–92 (in Ukrainian).

Maltsev, Y. I., Konovalenko, T. V., Barantsova, I. A., Maltseva, I. A., & Maltseva, K. I. (2017b). Prospects of using algae in biofuel production. Regulatory Mechanisms in Biosystems, 8(3), 455–460.

Maltsev, Y. I., Pakhomov, A. Y., & Maltseva, I. A. (2017a). Specific features of algal communities in forest litter of forest biogeocenoses of the Steppe zone. Contemporary Problems of Ecology, 10(1), 71–76.

Maltseva, I. A. (2009). Gruntovi vodorosti lisiv stepnoi zony Ukrainy [Soil algae of the forests of steppe area of Ukraine]. Lux, Melitopol (in Ukrainian).

Nakada, T., & Tomita, M. (2011). Chlamydomonas neoplanoconvexa nom. nov. and its unique phylogenetic position within Volvocales (Chlorophyceae). Phycological Research, 59, 194–199.

Nakada, T., & Tomita, M. (2016). Taxonomic revision of Chlamydomonas subg. Amphichloris (Volvocales, Chlorophyceae), with resurrection of the genus Dangeardinia and descriptions of Ixipapillifera gen. nov. and Rhysamphichloris gen. nov. Journal of Phycology, 52, 283–304.

Nakada, T., Misawa, K., & Nozaki, H. (2008). Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Molecular Phylogenetics and Evolution, 48, 281–291.

Nakada, T., Shinkawa, H., Ito, T., & Tomita, M. (2010). Recharacterization of Chlamydomonas reinhardtii and its relatives with new isolates from Japan. Journal of Plant Research, 123, 67–78.

Neustupa, J. I. (2015). Chlorophyta, Streptophyta p.p. (except Ulvophyceae, Charophyceae; incl. Trentepohliales). In: Wolfgang, F. (Ed.). Syllabus of plant families. A. Engler’s Syllabus der Pflanzenfamilien. Part 2/1: Photoautotrophic Eukaryotic Algae Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa, Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa, Euglenophyta/Euglenozoa, Chlorophyta, Streptophyta p.p. Borntraeger Science Pub., GmbH.

Neustupa, J. I., Elias, M., Skaloud, P., Nemcova, Y., & Sejnohova, L. (2011). Xylochloris irregularis gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel subaerial coccoid green alga. Phycologia, 50, 57–66.

Nozaki, H., Itoh, M., Sano, R., Uchida, H., Watanabe, M. M., & Kuroiwa, T. (1995). Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from rbcL gene sequence data. Journal of Phycology, 31, 970–979.

Posada, D. (2006). Modeltest server: A web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Research, 34, 700–703.

Řezanka, T., Nedbalova, L., Lukavský, J., Procházková, L., & Sigler, K. (2017). Lipidomic analysis of two closely related strains of the microalga Parietochloris (Trebouxiophyceae, Chlorophyta). Algal Research, 25, 473–482.

Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

Scherbina, V. V., Maltseva, I. A., & Solonenko, A. N. (2014). Peculiarities of postpyrogene development of algae in steppe biocenoses at Askania Nova Biospheric National Park. Contemporary Problems of Ecology, 7(2), 187–191.

Shekhovtseva, O. G., & Maltseva, I. A. (2015). Physical, chemical, and biological properties of soils in the city of Mariupol, Ukraine. Eurasian Soil Science, 48(12), 1393–1400.

Skaloud, P., Friedl, T., Hallmann, C., Beck, A., & Dal Grande, F. (2016). Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). Journal of Phycology, 52, 599–617.

Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology, 75, 758–771.

Talebi, A. F., Mohtashami, S. K., Tabatabaei, M., Tohidfar, M., Bagheri, A., Zeinalabedini, M., Mirzaei, H. H., Mirzajanzadeh, M., Shafaroudi, S. M., & Bakhtiari, S. (2013). Fatty acids profiling: A selective criterion for screening microalgae strains for biodiesel production. Algal Research, 2, 258–267.

Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

Trainor, F. R., & Bold, H. C. (1953). Three new unicellular Chlorophyceae from soil. American Journal of Botany, 40, 758–767.

Tsarenko, P. M., Wasser, S., & Nevo, E. (2011). Algae of Ukraine: Diversity, nomenclature, taxonomy, ecology and geography. Vol. 3. Chlorophyta. A. R. G. Rugell: Gantner Verlag K. G., Königstein.

White, T. J., Bruns, T., Lee, S., & Taylor, J. W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., Gelfand, D. H., Sninsky, J. J., & White, T. J. (Eds.). PCR protocols: A guide to methods and applications. Academic Press Inc., New York.

Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Research, 31, 3406–3415.

Published
2017-11-03
How to Cite
Maltsev, Y. I., & Konovalenko, T. V. (2017). New finding of green algae with potential for algal biotechnology, Chlorococcum oleofaciens and its molecular investigation. Regulatory Mechanisms in Biosystems, 8(4), 532–539. https://doi.org/10.15421/021782

Most read articles by the same author(s)