Effect of Salvia officinalis and S. sclarea on rats with a high-fat hypercaloric diet

  • M. A. Lieshchova Dnipro State Agrarian and Economic University
  • A. A. Bohomaz Dnipro State Agrarian and Economic University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: relative mass of the organs; increase in the body weight; high-fat diet; garden sage; clary sage; phytotherapy; obesity correction

Abstract

Phytotherapy for the correction of excess body weight is widely used. However, a comprehensive study of herbal preparations on the organism of model animals has been carried out only for a few plant species. Supplementing the diet of rats with closely related sage species (Salvia officinalis L. and S. sclarea L.) against the background of high-fat hypercaloric diet triggered multidirectional changes in their metabolism. The addition of crushed dry shoots of S. officinalis to the diet of animals led to a sharp increase in their body weight (up to 130.8% of the initial one in 30 days of the experiment). The body weight of the rats treated with S. sclarea for 30 days increased only up to 103.8% of their initial weight and was lower than in the control group. Addition of S. officinalis caused an increase in daily weight gain up to 253.1% of the control group, and S. sclarea – its decrease to 27.8% of the daily weight gain in the control group. In the S. officinalis group, the relative weight of the brain, spleen, and thymus decreased, while in the S. sclarea group, the relative weight of the thymus decreased and that of the colon increased. Under the influence of S. officinalis, the concentration of urea, total bilirubin, and triglycerides in the blood plasma of male rats decreased and the concentration of total protein and the activity of alkaline phosphatase increased. While consuming S. sclarea shoots, there was an increase of alkaline phosphatase activity in the rats’ blood, but atherogenic index (23.1% of the level of the control group) sharply dropped due to an increase in the concentration of high-density lipoprotein cholesterol (286.9% of the control) and a decrease in the concentration of low-density lipoprotein cholesterol (67.7% of control). In rats feeding on S. sclarea shoots, we observed a decrease in the concentration of triglycerides in the blood (39.9% of the control), a decrease in the activity of gamma-glutamyl transferase (62.8%), and an increase in the Ca/P ratio (132.5% of the control group). No significant changes were observed in CBC and WBC differential of male rats when eating S. officinalis and S. sclarea shoots. According to the results of the open field test, the physical and orientational activity of male rats under the influence of S. officinalis significantly decreased by the end of the experiment. Emotional status of rats, on the contrary, decreased when they ate dry crushed shoots of S. sclarea in the composition of the food. Thus, excess body weight of rats in the conditions of hypercaloric diet led to more pronounced deviations from the norm while consuming dry crushed shoots of S. officinalis. The addition of S. sclarea dry crushed shoots to the animals’ diet normalized the body weight in comparison with the control group, reduced the negative manifestations of obesity at the biochemical and organismal levels. In this regard, the substances that contains S. sclarea should be carefully studied for anti-atherosclerotic activity, and tea supplemented with S. sclarea shoots can be recommended as a corrective supplement in the diet of overweight people.

References

Abu-Odeh, A. M., & Talib, W. H. (2021). Middle East medicinal plants in the treatment of diabetes: A review. Molecules, 26(3), 742.

Agadzhanyan, A. A. (2015). Hypoglycemic and hypolipidemic activity of the leaf extract of Salvia officinalis L. Eurasian Union of Scientists, Series: Medical, Biological and Chemical Sciences, 12(21), 5–8.

AlMotwaa, S. M., Alkhatib, M. H., & Alkreathy, H. M. (2020). Incorporating ifosfamide into Salvia oil-based nanoemulsion diminishes its nephrotoxicity in mice inoculated with tumor. BioImpacts, 10(1), 9–16.

Bassil, M., Daher, C. F., Mroueh, M., & Zeeni, N. (2015). Salvia libanotica improves glycemia and serum lipid profile in rats fed a high fat diet. BMC Complementary and Alternative Medicine, 15, 384.

Ben Khedher, M. R., Hammami, M., Arch, J., Hislop, D. C., Eze, D., Wargent, E. T., Kępczyńska, M. A., & Zaibi, M. S. (2018). Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet-induced obesity in mice that responds to rosiglitazone. PeerJ, 6, e4166.

Bibi, M., Choudhary, M. I., & Yousuf, S. (2020). Crystal structure and hirshfeld surface analysis of the methanol solvate of sclareol, a labdane-type diterpenoid. Acta Crystallographica Section E – Crystallographic Communications, 76, 294.

Bilan, M. V., Lieshchova, M. A., Tishkina, N. M., & Brygadyrenko, V. V. (2019). Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regulatory Mechanisms in Biosystems, 10(2), 228–232.

Boyko, A. A., & Brygadyrenko, V. V. (2016). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 519–525.

Bozok, F., & Ulukanli, Z. (2016). Volatiles from the aerial parts of east mediterranean clary sage: Phytotoxic activity. Journal of Essential Oil Bearing Plants, 19(5), 1192–1198.

Brygadyrenko, V. V., Lieshchova, M. A., Bilan, M. V., Tishkina, N. M., & Horchanok, A. V. (2019). Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems, 10(4), 497–506.

Cavalcante E Costa, G. F., Nishijo, H., Caixeta, L. F., & Aversi-Ferreira, T. A. (2018). The confrontation between ethnopharmacology and pharmacological tests of medicinal plants associated with mental and neurological disorders. Evidence-Based Complementary and Alternative Medicine, 2018, 7686913.

Cerri, G. C., Lima, L. C. F., Lelis, D. D., Barcelos, L. D., Feltenberger, J. D., Mussi, S. V., Monteiro, R. S., dos Santos, R. A. S., Ferreira, L. A. M., & Santos, S. H. S. (2019). Sclareol-loaded lipid nanoparticles improved metabolic profile in obese mice. Life Sciences, 218, 292–299.

Ceschel, G. C., Maffei, P., Moretti, M. D. L., Peana, A. T., & Demontis, S. (1998). In vitro permeation through porcine buccal mucosa of Salvia sclarea L. essential oil from topical formulations. STP Pharma Sciences, 8(2), 103–106.

Chen, Q., Tang, K., & Guo, Y. (2020). Discovery of sclareol and sclareolide as filovirus entry inhibitors. Journal of Asian Natural Products Research, 22(5), 464–473.

Cui, H. Y., Zhang, X. J., Zhou, H., Zhao, C. T., & Lin, L. (2015). Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Botanical Studies, 56, 16.

Dinel, A. L., Lucas, C., Guillemet, D., Layé, S., Pallet, V., & Joffre, C. (2020). Chronic supplementation with a mix of Salvia officinalis and Salvia lavandulaefolia improves morris water maze learning in normal adult C57Bl/6J mice. Nutrients, 12(6), 1777.

Dogan, H. (2020). Minerals and bioactive content of some Salvia species in cultivated condition. Comptes Rendus de L Academie Bulgare des Sciences, 73(10), 1398–1408.

Durgha, H., Thirugnanasampandan, R., Ramya, G., & Ramanth, M. G. (2016). Inhibition of inducible nitric oxide synthase gene expression (iNOS) and cytotoxic activity of Salvia sclarea L. essential oil. Journal of King Saud University Science, 28(4), 390–395.

Ekin, H. N., Deliorman Orhan, D., Erdocan Orhan, I., Orhan, N., & Aslan, M. (2019). Evaluation of enzyme inhibitory and antioxidant activity of some Lamiaceae plants. Journal of Research in Pharmacy, 23(4), 749–758.

El-Gohary, A. E., Amer, H. M., Salama, A. B., Wahba, H. E., & Khalid, K. A. (2020). Characterization of the essential oil components of adapted Salvia sclarea L. (clary sage) plant under Egyptian environmental conditions. Journal of Essential Oil Bearing Plants, 23(4), 788–794.

El-Shafei, S. M. A., Abd El-Rahman, A. A., Tukhbatova, R. I., Ivanova, E. V., Akinina, E. A., Voronkova, Y. E., Bukuru, L. K., Fattakhova, A. N., Alimova, F. K. (2013). Effect of plant oils Nigella sativa and Salvia officinalis on the biochemical indices of CD-1 mice. Scientific Notes of Kazan University, 155(3), 82–89.

Erisen, S., Kurt-Gur, G., & Servi, H. (2020). In vitro propagation of Salvia sclarea L. by meta-topolin, and assessment of genetic stability and secondary metabolite profiling of micropropagated plants. Industrial Crops and Products, 157, 112892.

Fiore, G., Nencini, C., Cavallo, F., Capasso, A., Bader, A., Giorgi, G., & Micheli, L. (2006). In vitro antiproliferative effect of six Salvia species on human tumor cell lines. Phytotherapy Research, 20(8), 701–703.

Firuzi, O., Miri, R., Asadollahi, M., Eslami, S., & Jassbi, A. R. (2013). Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven Salvia species from Iran. Iranian Journal of Pharmaceutical Research, 12(4), 801–810.

Francik, S., Francik, R., Sadowska, U., Bystrowska, B., Zawiślak, A., Knapczyk, A., & Nzeyimana, A. (2020). Identification of phenolic compounds and determination of antioxidant activity in extracts and infusions of Salvia leaves. Materials, 13(24), 5811.

Fraternale, D., Giamperi, L., Bucchini, A., Ricci, D., Epifano, F., Genovese, S., & Curini, M. (2005). Composition and antifungal activity of essential oil of Salvia sclarea from Italy. Chemistry of Natural Compounds, 41(5), 604–606.

Ghowsi, M., Yousofvand, N., & Moradi, S. (2020). Effects of Salvia officinalis L. (common sage) leaves tea on insulin resistance, lipid profile, and oxidative stress in rats with polycystic ovary: An experimental study. Avicenna Journal of Phytomedicine, 10(3), 263–272.

Grigoriadou, K., Trikka, F. A., Tsoktouridis, G., Krigas, N., Sarropoulou, V., Papanastasi, K., Maloupa, E., & Makris, A. M. (2020). Micropropagation and cultivation of Salvia sclarea for essential oil and sclareol production in Northern Greece. In Vitro Cellular and Developmental Biology – Plant, 56(1), 51–59.

Gross, M., Nesher, E., Tikhonov, T., Raz, O., & Pinhasov, A. (2013). Chronic food administration of Salvia sclarea oil reduces animals’ anxious and dominant behavior. Journal of Medicinal Food, 16(3), 216–222.

Gunnewich, N., Higashi, Y., Feng, X. H., Choi, K. B., Schmidt, J., & Kutchan, T. M. (2013). A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate. Phytochemistry, 91, 93–99.

Hamidpour, M., Hamidpour, R., Hamidpour, S., & Shahlari, M. (2014). Chemistry, pharmacology, and medicinal property of sage (Salvia) to prevent and cure illnesses such as obesity, diabetes, depression, dementia, lupus, autism, heart disease, and cancer. Journal of Traditional and Complementary Medicine, 4(2), 82–88.

Han, S. H., Hur, M. H., Buckle, J., Choi, J., & Lee, M. S. (2006). Effect of aromatherapy on symptoms of dysmenorrhea in college students: A randomized placebo-controlled clinical trial. Journal of Alternative and Complementary Medicine, 12(6), 535–541.

Hanganu, D., Olah, N. K., Pop, C. E., Vlase, L., Oniga, I., Ciocarlan, N., Matei, A., Puscas, C., Silaghi-Dumitrescu, R., & Benedec, D. (2019). Evaluation of polyphenolic profile and antioxidant activity for some Salvia species. Farmacia, 67(5), 801–805.

Hudz, N., Yezerska, O., Shanaida, M., Sedlackova, V. H., & Wieczorek, P. P. (2019). Application of the Folin-Ciocalteu method to the evaluation of Salvia sclarea extracts. Pharmacia, 66(4), 209–215.

Jakovljević, M., Jokić, S., Molnar, M., Jašić, M., Babić, J., Jukić, H., & Banjari, I. (2019). Bioactive profile of various Salvia officinalis L. preparations. Plants, 8(3), 55.

Jasicka-Misiak, I., Poliwoda, A., Petecka, M., Buslovych, O., Shlyapnikov, V. A., & Wieczorek, P. P. (2018). Antioxidant phenolic compounds in Salvia officinalis L. and Salvia sclarea L. Ecological Chemistry and Engineering, 25(1), 133–142.

Jia, M. R., O’Brien, T. E., Zhang, Y., Siegel, J. B., Tantillo, D. J., & Peters, R. J. (2018). Changing face: A key residue for the addition of water by sciareol synthase. ACS Catalysis, 8(4), 3133–3137.

Jin, H. M., Shao, Z. X., Wang, Q. Q., Miao, J. S., Bai, X. Q., Liu, Q., Qiu, H., Wang, C., Zhang, Z. J., Jennifer, T., Wang, X. Y., & Xu, J. K. (2019). Sclareol prevents ovariectomy-induced bone loss in vivo and inhibits osteoclastogenesis in vitro via suppressing NF-kappa B and MAPK/ERK signaling pathways. Food and Function, 10(10), 6556–6567.

Karayel, H. B. (2020). Effect of natural boron mineral use on the essential oil ratio and components of musk sage (Salvia sclarea L.). Open Chemistry, 18(1), 732–739.

Karayel, H. B., & Akcura, M. (2019). Examination of the changes in components of the volatile oil from Abyssinian sage, musk sage and medical sage [Salvia aethiopis L., Salvia sclarea L. and Salvia officinalis L. (hybrid)] growing in different locations. Grasas y Aceites, 70(3), e319.

Kosti, M., Kitic, D., Petrovic, M. B., Jevtovic-Stoimenov, T., Jovic, M., Petrovic, A., & Zivanovic, S. (2017). Anti-inflammatory effect of the Salvia sclarea L. ethanolic extract on lipopolysaccharide-induced periodontitis in rats. Journal of Ethnopharmacology, 199, 52–59.

Kostova, I., Lasheva, V., Fidan, H., Georgieva, D., Damyanova, S., & Stoyanova, A. (2020). Effect of clary sage (Salvia sclarea L.) essential oil on paper packaging materials. Ukrainian Food Journal, 9(2), 287–297.

Kuzma, L., Derda, M., Hadas, E., & Wysokinska, H. (2015). Abietane diterpenoids from Salvia sclarea transformed roots as growth inhibitors of pathogenic Acanthamoeba spp. Parasitology Research, 114(1), 323–327.

Lieshchova, M. A., & Brygadyrenko, V. V. (2021). Influence of Lavandula angustifolia, Melissa officinalis and Vitex angus-castus on the organism of rats fed with excessive fat-containing diet. Regulatory Mechanisms in Biosystems, 12(1), 169–180.

Lieshchova, M. A., Bilan, M. V., Bohomaz, A. A., Tishkina, N. M., & Brygadyrenko, V. V. (2020). Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption. Regulatory Mechanisms in Biosystems, 11(2), 153–161.

Lieshchova, M. A., Brygadyrenko, V. V., Tishkina, N. M., Gavrilin, P. M., & Bohomaz, A. A. (2019). Impact of polyvinyl chloride, polystyrene, and polyethylene on the organism of mice. Regulatory Mechanisms in Biosystems, 10(1), 50–55.

Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591–597.

Loizzo, M. R., Abouali, M., Salehi, P., Sonboli, A., Kanani, M., Menichini, F., & Tundis, R. (2014). In vitro antioxidant and antiproliferative activities of nine Salvia species. Natural Product Research, 28(24), 2278–2285.

Mahboubi, M. (2020). Clary sage essential oil and its biological activities. Advances in Traditional Medicine, 20(4), 517–528.

Medeiros, A., Bianchi, S., Calvete, J. J., Balter, G., Bay, S., Robles, A., Cantacuzene, D., Nimtz, M., Alzari, P. M., & Osinaga, E. (2000). Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. European Journal of Biochemistry, 267(5), 1434–1440.

Miliauskas, G., Venskutonis, P. R., & van Beek, T. A. (2004). Screening of radical scavenging activity of some medicinal and aromatic plant extracts. Food Chemistry, 85(2), 231–237.

Mitic, M., Zrnic, A., Wanner, J., & Stappen, I. (2020). Clary sage essential oil and its effect on human mood and pulse rate: An in vivo pilot study. Planta Medica, 86(15), 1125–1132.

Monsefi, M., Abedian, M., Azarbahram, Z., & Ashraf, M. J. (2015). Salvia officinalis L. induces alveolar bud growing in adult female rat mammary glands. Avicenna Journal of Phytomedicine, 5(6), 560–567.

Monsefi, M., Nadi, A., & Alinejad, Z. (2017). The effects of Salvia officinalis L. on granulosa cells and in vitro maturation of oocytes in mice. International Journal of Reproductive Biomedicine, 15(10), 649–660.

Noori, S., Hassan, Z. M., & Salehian, O. (2013). Sclareol reduces CD4+ CD25+ FoxP3+ T-reg cells in a breast cancer model in vivo. Iranian Journal of Immunology, 10(1), 10–21.

Noori, S., Hassan, Z. M., Mohammadi, M., Habibi, Z., Sohrabi, N., & Bayanolhagh, S. (2010). Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cellular Immunology, 263(2), 148–153.

Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kulishenko, O. M., Borovik, I. V., Chumak, V., Kryvaya, A., & Boyko, O. O. (2019). Bactericidal, protistocidal, nematodicidal properties and chemical composition of ethanol extract of Punica granatum peel. Biosystems Diversity, 27(3), 300–306.

Peana, A. T., Moretti, M. D. L., & Juliano, C. (1999). Chemical composition and antimicrobial action of the essential oils of Salvia desoleana and S. sclarea. Planta Medica, 65(8), 752–754.

Pereira, A., Banegas-Luna, A. J., Peña-García, J., Pérez-Sánchez, H., & Apostolides, Z. (2019). Evaluation of the anti-diabetic activity of some common herbs and spices: Providing new insights with inverse virtual screening. Molecules, 24(22), 4030.

Pitarokili, D., Couladis, M., Petsikos-Panayotarou, N., & Tzakou, O. (2002). Composition and antifungal activity on soil-borne pathogens of the essential oil of Salvia sclarea from Greece. Journal of Agricultural and Food Chemistry, 50(23), 6688–6691.

Pop, A. V., Tofana, M., Socaci, S. A., Pop, C., Rotar, A. M., Nagy, M., & Salanta, L. (2016). Determination of antioxidant capacity and antimicrobial activity of selected Salvia species. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca – Food Science and Technology, 73(1), 14–18.

Raafat, K., & Habib, J. (2018). Phytochemical compositions and antidiabetic potentials of Salvia sclarea L. essential oils. Journal of Oleo Science, 67(8), 1015–1025.

Rozalski, M., Kuzma, L., Krajewska, U., & Wysokinska, H. (2006). Cytotoxic and proapoptotic activity of diterpenoids from in vitro cultivated Salvia sclarea roots. Studies on the leukemia cell lines. Zeitschrift Fur Naturforschung Section C – A Journal of Biosciences, 61, 483–488.

Salehi, B., Ata, A., V Anil Kumar, N., Sharopov, F., Ramírez-Alarcón, K., Ruiz-Ortega, A., Abdulmajid Ayatollahi, S., Tsouh Fokou, P. V., Kobarfard, F., Amiruddin Zakaria, Z., Iriti, M., Taheri, Y., Martorell, M., Sureda, A., Setzer, W. N., Durazzo, A., Lucarini, M., Santini, A., Capasso, R., Ostrander, E. A., Ur-Rahman, A., Choudhary, M. I., Cho, W. C., & Sharifi-Rad, J. (2019). Antidiabetic potential of medicinal plants and their active components. Biomolecules, 9(10), 551.

Seol, G. H., Lee, Y. H., Kang, P., You, J. H., Park, M., & Min, S. S. (2013). Randomized controlled trial for Salvia sclarea or Lavandula angustifolia: Differential effects on blood pressure in female patients with urinary incontinence undergoing urodynamic examination. Journal of Alternative and Complementary Medicine, 19(7), 664–670.

Seol, G. H., Shim, H. S., Kim, P. J., Moon, H. K., Lee, K. H., Shim, I., Suh, S. H., & Min, S. S. (2010). Antidepressant-like effect of Salvia sclarea is explained by modulation of dopamine activities in rats. Journal of Ethnopharmacology, 130(1), 187–190.

Tavakkoli, M., Miri, R., Jassbi, A. R., Erfani, N., Asadollahi, M., Ghasemi, M., Saso, L., & Firuzi, O. (2014). Carthamus, Salvia and Stachys species protect neuronal cells against oxidative stress-induced apoptosis. Pharmaceutical Biology, 52(12), 1550–1557.

Tkachuk, V. G., & Shapoval, V. V. (1987). The effect of Salvia sclarea ether oil on the immunological and enzymatic systems. Vrachebnoe Delo, 5, 83–84.

Toghyani, M., Akhavan, M. I., & Aghdam, S. H. (2012). Effect of sage powder (Salvia officinalis L.) on serum biochemistry and immunity of broiler chicks. Reviews on Clinical Pharmacology and Drug Therapy, 10(2), 107.

Tuttolomondo, T., Iapichino, G., Licata, M., Virga, G., Leto, C., & La Bella, S. (2020). Agronomic evaluation and chemical characterization of Sicilian Salvia sclarea L. accessions. Agronomy, 10(8), 1114.

Ulubelen, A., Topcu, G., Eris, C., Sonmez, U., Kartal, M., Kurucu, S., & Bozokjohansson, C. (1994). Terpenoids from Salvia sclarea. Phytochemistry, 36(4), 971–974.

Vaccaro, M. C., Alfieri, M., De Tommasi, N., Moses, T., Goossens, A., & Leone, A. (2020). Boosting the synthesis of pharmaceutically active abietane diterpenes in S. sclarea hairy roots by engineering the GGPPS and CPPS genes. Frontiers in Plant Science, 11, 924.

Vaccaro, M., Bernal, V. O., Malafronte, N., De Tommasi, N., & Leone, A. (2019). High yield of bioactive abietane diterpenes in Salvia sclarea hairy roots by overexpressing cyanobacterial DXS or DXR genes. Planta Medica, 85, 973–980.

Vega, N., & Perez, G. (2006). Isolation and characterisation of a Salvia bogotensis seed lectin specific for the Tn antigen. Phytochemistry, 67(4), 347–355.

Vergine, M., Nicoli, F., Negro, C., Luvisi, A., Nutricati, E., Accogli, R. A., Sabena, E., & Miceli, A. (2019). Phytochemical profiles and antioxidant activity of Salvia species from Southern Italy. Records of Natural Products, 13(3), 205–215.

Wong, J., Chiang, Y. F., Shih, Y. H., Chiu, C. H., Chen, H. Y., Shieh, T. M., Wang, K. L., Huang, T. C., Hong, Y. H., & Hsia, S. M. (2020). Salvia sclarea L. essential oil extract and its antioxidative phytochemical sclareol inhibit oxytocin-induced uterine hypercontraction dysmenorrhea model by inhibiting the Ca2+-MLCK-MLC20 signaling cascade: An ex vivo and in vivo study. Antioxidants, 9(10), 991.

Wu, A. M. (2005). Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAc alpha 1 -> Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea). Journal of Biomedical Science, 12(1), 167–184.

Yang, H. J., Kim, K. Y., Kang, P., Lee, H. S., & Seol, G. H. (2014). Effects of Salvia sclarea on chronic immobilization stress induced endothelial dysfunction in rats. BMC Complementary and Alternative Medicine, 14, 396.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., & Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.

Zivkovic, J., Ristic, M., Kschonsek, J., Westphal, A., Mihailovic, M., Filipovic, V., & Bohm, V. (2017). Comparison of chemical profile and antioxidant capacity of seeds and oils from Salvia sclarea and Salvia officinalis. Chemistry and Biodiversity, 14(12), e1700344. 

Published
2021-08-12
How to Cite
Lieshchova, M. A., Bohomaz, A. A., & Brygadyrenko, V. V. (2021). Effect of Salvia officinalis and S. sclarea on rats with a high-fat hypercaloric diet . Regulatory Mechanisms in Biosystems, 12(3), 554-563. https://doi.org/10.15421/022176

Most read articles by the same author(s)

> >>