Etiological factors in triggering non-specific allergic reactions to tuberculin in cattle

  • A. I. Zavgorodnii Institute of Experimental and Clinical Veterinary Medicine
  • S. A. Pozmogova Institute of Experimental and Clinical Veterinary Medicine
  • M. V. Kalashnyk Institute of Experimental and Clinical Veterinary Medicine
  • A. P. Paliy Institute of Experimental and Clinical Veterinary Medicine
  • L. V. Plyuta Sumy National Agrarian University
  • A. P. Palii Kharkiv Petro Vasylenko National Technical University of Agriculture
Keywords: allergens; identification; non-specific reactions; Actinomyces spp.; Nocardia spp.; Rhodococcus spp.; disinfectant.

Abstract

The article presents the results of allergic and bacteriological studies of cattle from a tuberculosis-free farm. The presence of cattle reacting to an allergen from atypical mycobacteria was established in three allergic simultaneous tests during 2019–2020. Based on the results obtained, the causative agent of tuberculosis and atypical mycobacteria were not isolated during the bacteriological examination of a biological material from animals slaughtered for diagnostic purposes (n = 17), as well as soil (n = 5) and straw (n = 3) samples. However, microorganisms of the genera Nocardia (n = 2), Rhodococcus (n = 10), and Actinomyces (n = 5) were isolated from the biomaterial according to the results of microscopy, culture and biochemical tests. These microorganisms were also isolated from the soil and straw samples. Short-term non-specific reactions in cattle to mycobacterial allergens were due to the persistence and circulation of the aforementioned microorganisms closely related to mycobacteria. It was determined that the genera Nocardia and Rhodococcus are sensitive to the 1.0%, 2.0%, 3.0% solutions of glutaraldehyde, formaldehyde and sodium hydroxide. Thus, it is necessary to take into account the epizootic situation as to the presence of nocardioform microorganisms in the herd during routine allergic studies, as well as in case of differentiation between specific reactions and paraallergic and pseudoallergic ones. It is necessary to carry out comprehensive systematic studies of livestock and feed quality assessment. For the purpose of disinfection, glutaraldehyde and formaldehyde at a concentration of 1.0% are effective in destroying microorganisms of the genera Nocardia and Rhodococcus with 3-hour exposure or more.

References

Basybekov, S. Z., Bazarbayev, M. B., Yespembetov, B. A., Mussaeva, A., Kanatbayev, S. G., Romashev, K. M., Dossanova, A. K., Yelekeyev, T. A., Akmatova, E. K., & Syrym, N. S. (2018). Diagnostics of tuberculosis and differentiation of nonspecific tuberculin reactions in animals. Brazilian Journal of Microbiology, 49(2), 329–335.

Bocian, E., Grzybowska, W., & Tyski, S. (2014). Evaluation of mycobactericidal activity of selected chemical disinfectants and antiseptics according to European standards. Medical Science Monitor, 20, 666–673.

Brown-Elliott, B. A., Brown, J. M., Conville, P. S., & Wallace, R. J. (2006). Clinical and laboratory features of the Nocardia spp. based on current molecular taxonomy. Clinical Microbiology Reviews, 19(2), 259–282.

Dodd, P. J., Millington, K. A., Ghani, A. C., Mutsvangwa, J., Butterworth, A. E., Lalvani, A., & Corbett, E. L. (2010). Interpreting tuberculin skin tests in a population with a high prevalence of HIV, tuberculosis, and nonspecific tuberculin sensitivity. American Journal of Epidemiology, 171(9), 1037–1045.

Festing, S., & Wilkinson, R. (2007). The ethics of animal research. Talking Point on the use of animals in scientific research. EMBO Reports, 8(6), 526–530.

Gajdács, M., & Urbán, E. (2020). The pathogenic role of Actinomyces spp. and related organisms in genitourinary infections: Discoveries in the new, modern diagnostic era. Antibiotics, 9, 524.

Giguère, S., Cohen, N. D., Chaffin, M. K., Hines, S. A., Hondalus, M. K., Prescott, J. F., & Slovis, N. M. (2011). Rhodococcus equi: Clinical manifestations, virulence, and immunity. Journal of Veterinary Internal Medicine, 25(6), 1221–1230.

Goodfellow, M., & Maldonado, L. A. (2006). The families Dietziaceae, Gordoniaceae, Nocardiaceae and Tsukamurellaceae. Prokaryotes, 3, 843–888.

Gürtler, V., Mayall, B. C., & Seviour, R. (2004). Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiology Reviews, 28(3), 377–403.

Jeckel, S., Holmes, P., King, S., Whatmore, A. M., & Kirkwood, I. (2011). Disseminated Rhodococcus equi infection in goats in the UK. The Veterinary Record, 169(2), 56.

Jones, G. J., Hewinson, R. G., & Vordermeier, H. M. (2010). Screening of predicted secreted antigens from Mycobacterium bovis identifies potential novel differential diagnostic reagents. Clinical and Vaccine Immunology, 17(9), 1344–1348.

Kabene, S., & Baadel, S. (2019). Bioethics: A look at animal testing in medicine and cosmetics in the UK. Journal of Medical Ethics and History of Medicine, 12, 15.

Kamboj, M., & Kalra, C., & Kak, V. (2005). Rhodococcus equi brain abscess in a patient without HIV. Journal of Clinical Pathology, 58(4), 423–425.

Kelley, H. V., Waibel, S. M., Sidiki, S., Tomatis-Souverbielle, C., Scordo, J. M., Hunt, W. G., Barr, N., Smith, R., Silwani, S. N., Averill, J. J., Baer, S., Hengesbach, J., Yildiz, V. O., Pan, X., Gebreyes, W. A., Balada-Llasat, J. M., Wang, S. H., & Torrelles, J. B. (2020). Accuracy of two point-of-care tests for rapid diagnosis of bovine tuberculosis at animal level using non-invasive specimens. Scientific Reports, 10(1), 5441.

Kindermann, J., Karbiener, M., Leydold, S. M., Knotzer, S., Modrof, J., & Kreil, T. R. (2020). Virus disinfection for biotechnology applications: Different effectiveness on surface versus in suspension. Biologicals, 64, 1–9.

Mahendra, P., & Dave, P. (2016). Nocardiosis: An emerging infectious Actinomycetic disease of humans and animals. Journal of Microbiology and Microbial Technology, 1(2), 4.

Masand, A., Kumar, N., & Patial, V. (2015). Actinomycosis (lumpy jaw) in cow: A case report. Comparative Clinical Pathology, 24, 541–543.

Mc Carlie, S., Boucher, C. E., & Bragg, R. R. (2020). Molecular basis of bacterial disinfectant resistance. Drug Resistance Updates, 48, 100672.

McNeil, M. M., & Brown, J. M. (1994). The medically important aerobic actinomycetes: Epidemiology and microbiology. Clinical Microbiological Reviews, 7(3), 357–417.

Medo, J., Hleba, L., Císarová, M., & Soňa Javoreková, S. (2019). Antimicrobial activity of actinomycetes and characterization of actinomycin-producing strain KRG-1 isolated from Karoo, South Africa. Brazilian Journal of Pharmaceutical Sciences, 55, e17249.

Michel, A. L. (2008). Mycobacterium fortuitum infection interference with Mycobacterium bovis diagnostics: Natural infection cases and a pilot experimental infection. Journal of Veterinary Diagnostic Investigation, 20, 501–503.

Nalapa, D. P., Muwonge, A., Kankya, C., & Olea-Popelka, F. (2017). Prevalence of tuberculous lesion in cattle slaughtered in Mubende district, Uganda. BMC Veterinary Research, 13, 73.

Njenga, W. P., Mwaura, F. B., Wagacha, J. M., & Gathuru, E. M. (2017). Methods of isolating Actinomycetes from the soils of Menengai Crater in Kenya. Archives of Clinical Microbiology, 8, 3.

Nuru, A., Zewude, A., Mohammed, T., Wondale, B., Teshome, L., Getahun, M., Mamo, G., Medhin, G., Pieper, R., & Ameni, G. (2017). Nontuberculosis mycobacteria are the major causes of tuberculosis like lesions in cattle slaughtered at Bahir Dar Abattoir, Northwestern Ethiopia. BMC Veterinary Research, 13, 237.

Paliy, A. P., Stegniy, B. T., Muzyka, D. V., Gerilovych, A. P., & Korneykov, O. M. (2016). The study of the properties of the novel virucidal disinfectant. Agricultural Science and Practice, 3(3), 41–47.

Paliy, A. P., Zavgorodniy, A. I., Stegniy, B. T., & Palii, A. P. (2020). Naukovo-metodychni osnovy kontrolyu rozrobky ta zastosuvannya zasobiv dezinfektsiyi [Scientific and methodological grounds for controlling the development and use of disinfectants]. Miskdruk, Kharkiv (in Ukrainian).

Parte, A. C., Sardà Carbasse, J., Meier-Kolthoff, J. P., Reimer, L. C., & Göker, M. (2020). List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70(11), 5607–5612.

Pearlman, O. (2019). Reviewing the use of glutaraldehyde for high-level disinfection by sonographers. Journal of Diagnostic Medical Sonography, 35(1), 49–57.

Ramos, D. F., Silva, P. E. A., & Dellagostin, O. A. (2015). Diagnosis of bovine tuberculosis: Review of main techniques. Brazilian Journal of Biology, 75(4), 830–837.

Sapkota, A., Thapa, A., Budhathoki, A., Sainju, M., Shrestha, P., & Aryal, S. (2020). Isolation, characterization, and screening of antimicrobial-producing actinomycetes from soil samples. International Journal of Microbiology, 2020, 2716584.

Shinoda, N., Mitarai, S., Suzuki, E., & Watanabe, M. (2016). Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan. Antimicrobial Resistance and Infection Control, 5, 3.

Shkromada, O., Skliar, O., Paliy, A., Ulko, L., Gerun, I., Naumenko, О., Ishchenko, K., Kysterna, O., Musiienko, O., & Paliy, A. (2019). Development of measures to improve milk quality and safety during production. Eastern-European Journal of Enterprise Technologies, 3/11(99), 30–39.

Siavashifar, M., Rezaei, F., Motallebirad, T., Azadi, D., Absalan, A., Naserramezani, Z., Golshani, M., Jafarinia, M., & Ghaffari, K. (2021). Species diversity and molecular analysis of opportunistic Mycobacterium, Nocardia and Rhodococcus isolated from the hospital environment in a developing country, a potential resources for nosocomial infection. Genes and Environment, 43(1), 2.

Sicuro, B. (2016). The use of formaldehyde for the disinfection of maternally incubited eggs of noble crayfish (Astacus astacus). International Aquatic Research, 8, 353–359.

Singh, V., Haque, S., Singh, H., Verma, J., Vibha, K., Singh, R., Jawed, A., & Tripathi, K. M. (2016). Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Frontiers in Microbiology, 7, 1921.

Sullivan, D. C., & Chapman, S. W. (2010). Bacteria that masquerade as fungi: Actinomycosis/Nocardia. Proceedings of the American Thoracic Society, 7(3), 216–221.

Tkachenko, A. A., Davydenko, P. O., Zazharskiy, V. V., & Brygadyrenko, V. V. (2016). Biological properties of dissociative L- and other forms of Mycobacterium bovis. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 338–346.

Van Metre, D. C., Tennant, B. C., & Whitlock, R. H. (2008). Infectious diseases of the gastrointestinal tract. Rebhun's Diseases of Dairy Cattle, 2008, 200–294.

Vázquez-Boland, J. A., Giguère, S., Hapeshi, A., MacArthur, I., Anastasi, E., & Valero-Rello, A. (2013). Rhodococcus equi: The many facets of a pathogenic actinomycete. Veterinary Microbiology, 167, 9–33.

Vordermeier, M., Gordon, S. V., & Hewinson, R. G. (2011). Mycobacterium bovis antigens for the differential diagnosis of vaccinated and infected cattle. Veterinary Microbiology, 151, 8–13.

West, A. M., Teska, P. J., Lineback, C. B., & Oliver, H. F. (2018). Strain, disinfectant, concentration, and contact time quantitatively impact disinfectant efficacy. Antimicrobial Resistance and Infection Control, 7, 49.

Yamshchikov, A. V., Schuetz, A., & Lyon, G. M. (2010). Rhodococcus equi infection. The Lancet Infectious Diseases, 10(5), 350–359.

Zavgorodnii, A. I., Bilushko, V. V., Kalashnyk, M. V., Pozmogova, S. A., & Kalashnyk, N. V. (2018). Psevdoalerhichni reaktsiyi na tuberkulin u velykoyi rohatoyi khudoby [Pseudo-allergic reactions to tuberculin in cattle]. Veterinary Biotechnology, 32(2), 176–184 (in Ukrainian).

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., & Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., Kabar, A. M., & Brygadyrenko, V. V. (2020). Antibacterial and fungicidal effect of ethanol extracts from Juniperus sabina, Chamaecyparis lawsoniana, Pseudotsuga menziesii and Cephalotaxus harringtonia. Regulatory Mechanisms in Biosystems, 11(1), 105–109.

Published
2021-05-11
How to Cite
Zavgorodnii, A. I., Pozmogova, S. A., Kalashnyk, M. V., Paliy, A. P., Plyuta, L. V., & Palii, A. P. (2021). Etiological factors in triggering non-specific allergic reactions to tuberculin in cattle . Regulatory Mechanisms in Biosystems, 12(2), 228-233. https://doi.org/10.15421/022131