Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms

  • V. V. Povoroznyuk D. F. Chebotarev Institute of Gerontology
  • N. V. Dedukh D. F. Chebotarev Institute of Gerontology
  • M. A. Bystrytska D. F. Chebotarev Institute of Gerontology
  • V. S. Shapovalov Kyiv City Clinical Emergency Hospital
Keywords: bone cells; interactions; glucocorticoids; genomic and non-genomic effects; signaling pathways.

Abstract

This review provides a rationale for the cellular and molecular mechanisms of bone remodeling stages under physiological conditions and glucocorticoids (GCs) in excess. Remodeling is a synchronous process involving bone resorption and formation, proceeding through stages of: (1) resting bone, (2) activation, (3) bone resorption, (4) reversal, (5) formation, (6) termination. Bone remodeling is strictly controlled by local and systemic regulatory signaling molecules. This review presents current data on the interaction of osteoclasts, osteoblasts and osteocytes in bone remodeling and defines the role of osteoprogenitor cells located above the resorption area in the form of canopies and populating resorption cavities. The signaling pathways of proliferation, differentiation, viability, and cell death during remodeling are presented. The study of signaling pathways is critical to understanding bone remodeling under normal and pathological conditions. The main signaling pathways that control bone resorption and formation are RANK / RANKL / OPG; M-CSF – c-FMS; canonical and non-canonical signaling pathways Wnt; Notch; MARK; TGFβ / SMAD; ephrinB1/ephrinB2 – EphB4, TNFα – TNFβ, and Bim – Bax/Bak. Cytokines, growth factors, prostaglandins, parathyroid hormone, vitamin D, calcitonin, and estrogens also act as regulators of bone remodeling. The role of non-encoding microRNAs and long RNAs in the process of bone cell differentiation has been established. MicroRNAs affect many target genes, have both a repressive effect on bone formation and activate osteoblast differentiation in different ways. Excess of glucocorticoids negatively affects all stages of bone remodeling, disrupts molecular signaling, induces apoptosis of osteocytes and osteoblasts in different ways, and increases the life cycle of osteoclasts. Glucocorticoids disrupt the reversal stage, which is critical for the subsequent stages of remodeling. Negative effects of GCs on signaling molecules of the canonical Wingless (WNT)/β-catenin pathway and other signaling pathways impair osteoblastogenesis. Under the influence of excess glucocorticoids biosynthesis of biologically active growth factors is reduced, which leads to a decrease in the expression by osteoblasts of molecules that form the osteoid. Glucocorticoids stimulate the expression of mineralization inhibitor proteins, osteoid mineralization is delayed, which is accompanied by increased local matrix demineralization. Although many signaling pathways involved in bone resorption and formation have been discovered and described, the temporal and spatial mechanisms of their sequential turn-on and turn-off in cell proliferation and differentiation require additional research.

References

Ackers, I., & Malgor, R. (2018). Interrelationship of canonical and non-canonical Wnt signalling pathways in chronic metabolic diseases. Diabetes and Vascular Disease Research, 15(1), 3–13.

Almeida, M., Han, L., Ambrogini, E., Weinstein, R. S., & Manolagas, S. C. (2011). Glucocorticoids and tumor necrosis factor α increase oxidative stress and suppress Wnt protein signaling in osteoblasts. The Journal of Biological Chemistry, 286(52), 44326–44335.

Amarasekara, D. S., Yun, H., Kim, S., Lee, N., Kim, H., & Rho, J. (2018). Regulation of osteoclast differentiation by cytokine networks. Immune Network, 18(1), e8.

Amiche, M. A., Albaum, J. M., Tadrous, M., Pechlivanoglou, P., Lévesque, L. E., Adachi, J. D., & Cadarette, S. M. (2016). Fracture risk in oral glucocorticoid users: A Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporosis International, 27(5), 1709–1718.

Andersen, T. L., Abdelgawad, M. E., Kristensen, H. B., Hauge, E. M., Rolighed, L., Bollerslev, J., Kjærsgaard-Andersen, P., & Delaisse, J. M. (2013). Understanding coupling between bone resorption and formation: Are reversal cells the missing link? The American Journal of Pathology, 183(1), 235–246.

Andersen, T. L., Sondergaard, T. E., Skorzynska, K. E., Dagnaes-Hansen, F., Plesner, T. L., Hauge, E. M., Plesner, T., & Delaisse, J. M. (2009). A physical mechanism for coupling bone resorption and formation in adult human bone. The American Journal of Pathology, 174(1), 239–247.

Anderson, H. C. (2003). Matrix vesicles and calcification. Current Rheumatology Reports, 5, 222–226.

Angeli, A., Guglielmi, G., Dovio, A., Capelli, G., de Feo, D., Giannini, S., Giorgino, R., Moro, L., & Giustina, A. (2006). High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: A cross-sectional outpatient study. Bone, 39(2), 253–259.

Bennett, C. N., Longo, K. A., Wright, W. S., Suva, L. J., Lane, T. F., Hankenson, K. D., & MacDougald, O. A. (2005). Regulation of osteoblastogenesis and bone mass by Wnt10b. Proceedings of the National Academy of Sciences of the United States of America, 102(9), 3324–3329.

Boivin, G., Farlay, D., Bala, Y., Doublier, A., Meunier, P. J., & Delmas, P. D. (2009). Influence of remodeling on the mineralization of bone tissue. Osteoporosis International, 20(6), 1023–1026.

Boyce, B. F., & Xing, L. (2008). Functions of RANKL/RANK/OPG in bone modeling and remodeling. Archives of Biochemistry And Biophysics, 473(2), 139–146.

Boyce, B. F., Li, J., Xing, L., & Yao, Z. (2018). Bone remodeling and the role of TRAF3 in osteoclastic bone resorption. Frontiers in Immunology, 9, 2263.

Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423(6937), 337–342.

Braun, T., & Zwerina, J. (2011). Positive regulators of osteoclastogenesis and bone resorption in rheumatoid arthritis. Arthritis Research and Therapy, 13, 235.

Briot, K., & Roux, C. (2015). Glucocorticoid-induced osteoporosis. RMD Open, 1(1), e000014.

Broege, A., Pham, L., Jensen, E. D., Emery, A., Huang, T. H., Stemig, H., Beppu, M., Petryk, A., O'Connor, M., Mansky, K., & Gopalakrishnan, R. (2013). Bone morphogenetic proteins signal via SMAD and mitogen-activated protein (MAP) kinase pathways at distinct times during osteoclastogenesis. Journal of Biological Chemistry, 288, 52, 37230–37240.

Buckley, L., Guyatt, G., Fink, H. A., Cannon, M., Grossman, J., Hansen, K. E., Humphrey, M. B., Lane, N. E., Magrey, M., Miller, M., Morrison, L., Rao, M., Robinson, A. B., Saha, S., Wolver, S., Bannuru, R. R., Vaysbrot, E., Osani, M., Turgunbaev, M., Miller, A. S., & McAlindon, T. (2017). 2017 American College of Rheumatology guideline for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis and Rheumatology, 69(8), 1521–1537.

Chen, F., Zhang, L., OuYang, Y., Guan, H., Liu, Q., & Ni, B. (2014). Glucocorticoid induced osteoblast apoptosis by increasing E4BP4 expression via up-regulation of Bim. Calcified Tissue International, 94(6), 640–647.

Chen, G., Deng, C., & Li, Y. P. (2012). TGF-β and BMP signaling in osteoblast differentiation and bone formation. International Journal of Biological Sciences, 8(2), 272–288.

Chen, H., Senda, T., & Kubo, K. Y. (2015). The osteocyte plays multiple roles in bone remodeling and mineral homeostasis. Medical Molecular Morphology, 48(2), 61–68.

Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E. M., & Xie, C. (2018). Osteoblast-osteoclast interactions. Connective Tissue Research, 59(2), 99–107.

Chen, Z., Xue, J., Shen, T., Mu, S., & Fu, Q. (2016). Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. International Journal of Molecular Medicine, 37(2), 329–338.

Cheon, Y. H., Kim, J. Y., Baek, J. M., Ahn, S. J., Jun, H. Y., Erkhembaatar, M., Kim, M. S., Lee, M. S., & Oh, J. (2016). WHI-131 promotes osteoblast differentiation and prevents osteoclast formation and resorption in mice. Journal of Bone and Mineral Research, 31(2), 403–415.

Cherian, K. E., Kapoor, N., & Paul, T. V. (2017). Glucocorticoid-induced osteoporosis. Indian Journal of Endocrinology and Metabolism, 21(5), 652–654.

Cho, S. W. (2015). Role of osteal macrophages in bone metabolism. Journal of Pathology and Translational Medicine, 49(2), 102–104.

Chotiyarnwong, P., & McCloskey, E. (2020). Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nature Reviews Endocrinology, 16, 437–447.

Chuang, M. H., Chuang, T. L., Koo, M., & Wang, Y. F. (2017). Trabecular bone score reflects trabecular microarchitecture deterioration and fragility fracture in female adult patients receiving glucocorticoid therapy: A pre-post controlled study. BioMed Research International, 2017, 4210217.

Clayton, S. A., Jones, S. W., Kurowska-Stolarska, M., & Clark, A. R. (2018). The role of microRNAs in glucocorticoid action. The Journal of Biological Chemistry, 293(6), 1865–1874.

Compston, J. (2018). Glucocorticoid-induced osteoporosis: An update. Endocrine, 61(1), 7–16.

Conaway, H. H., Henning, P., Lie, A., Tuckermann, J., & Lerner, U. H. (2019). Glucocorticoids employ the monomeric glucocorticoid receptor to potentiate vitamin D3 and parathyroid hormone-induced osteoclastogenesis. FASEB Journal, 33(12), 14394–14409.

Conaway, H. H., Henning, P., Lie, A., Tuckermann, J., & Lerner, U. H. (2016). Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity. Bone, 93, 43–54.

Cooper, M. S., Blumsohn, A., Goddard, P. E., Bartlett, W. A., Shackleton, C. H., Eastell, R., Hewison, M., & Stewart, P. M. (2003). 11beta-hydroxysteroid dehydrogenase type 1 activity predicts the effects of glucocorticoids on bone. Journal of Clinical Endocrinology and Metabolism, 88(8), 3874–3877.

Cruz-Topete, D., & Cidlowski, J. A. (2015). One hormone, two actions: Anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation, 22, 20–32.

Deb Roy, A., Yin, T., Choudhary, S., Rodionov, V., Pilbeam, C. C., & Wu, Y. I. (2017). Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts. Nature Communications, 8, 15831.

Delaisse, J. M. (2014). The reversal phase of the bone-remodeling cycle: Cellular prerequisites for coupling resorption and formation. BoneKey Reports, 3, 561.

Deng, S., Dai, G., Chen, S., Nie, Z., Zhou, J., Fang, H., & Peng, H. (2019). Dexamethasone induces osteoblast apoptosis through ROS-PI3K/AKT/GSK3β signaling pathway. Biomedicine and Pharmacotherapy, 110, 602–608.

Espina, B., Liang, M., Russell, R. G., & Hulley, P. A. (2008). Regulation of bim in glucocorticoid-mediated osteoblast apoptosis. Journal of Cellular Physiology, 215(2), 488–496.

Everts, V., Delaissé, J. M., Korper, W., Jansen, D. C., Tigchelaar-Gutter, W., Saftig, P., & Beertsen, W. (2002). The bone lining cell: Its role in cleaning Howship’s lacunae and initiating bone formation. Journal of Bone and Mineral Research, 17(1), 77–90.

Fan, J. B., Zhang, Y., Liu, W., Zhu, X. H., Xu, D. W., Zhao, J. N., & Cui, Z. M. (2018). Long non-coding RNA MALAT1 protects human osteoblasts from dexamethasone-induced injury via activation of PPM1E-AMPK signaling. Cellular Physiology and Biochemistry, 51, 31–45.

Feng, X., & McDonald, J. M. (2011). Disorders of bone remodeling. Annual Review of Pathology, 6, 121–145.

Feng, X., & Teitelbaum, S. L. (2013). Osteoclasts: New insights. Bone Research, 1(1), 11–26.

Fenton, C. G., Doig, C. L., Fareed, S., Naylor, A., Morrell, A. P., Addison, O., Wehmeyer, C., Buckley, C. D., Cooper, M. S., Lavery, G. G., Raza, K., & Hardy, R. S. (2019). 11β-HSD1 plays a critical role in trabecular bone loss associated with systemic glucocorticoid therapy. Arthritis Research and Therapy, 21(1), 188.

Fernández-Tresguerres-Hernández-Gil, I., Alobera-Gracia, M. A., del-Canto-Pingarrón, M., & Blanco-Jerez, L. (2006). Physiological bases of bone regeneration II. The remodeling process. Medicina Oral, Patologia Oral y Cirugia Bucal, 11(2), E151–E157.

Florencio-Silva, R., Sasso, G. R., Sasso-Cerri, E., Simões, M. J., & Cerri, P. S. (2015). Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Research International, 2015, 421746.

Fong, D., Bisson, M. L., Laberge, G., McManus, S., Grenier, G., Faucheux, N., & Roux, S. (2013). Bone morphogenetic protein-9 activates Smad and ERK pathways and supports human osteoclast function and survival in vitro. Cellular Signalling, 25(4), 717–728.

Franceschi, R. T., & Xiao, G. (2003). Regulation of the osteoblast-specific transcription factor, RUNX2: Responsiveness to multiple signal transduction pathways. Journal of Cellular Biochemistry, 88(3), 446–454.

Frenkel, B., White, W., & Tuckermann, J. (2015). Glucocorticoid-induced osteoporosis. Advances in Experimental Medicine and Biology, 872, 179–215.

Fu, C., & Shi, R. (2020). Osteoclast biology in bone resorption: A review. STEMedicine, 1(4), e57.

Garcia, J., & Delany, A. M. (2021). MicroRNAs regulating TGFβ and BMP signaling in the osteoblast lineage. Bone, 143, 115791.

Goldring, S. R. (2015). The osteocyte: Key player in regulating bone turnover. RMD Open, 1, e000049.

Guañabens, N., Gifre, L., & Peris, P. (2014). The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Current Osteoporosis Reports, 12, 90–97.

Hachemi, Y., Rapp, A. E., Picke, A. K., Weidinger, G., Ignatius, A., Tuckermann, J., Weidinger, G., Ignatius, A., & Tuckermann, J. (2018). Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. Journal of Molecular Endocrinology, 61(1), R75–R90.

Han, L., Wang, B., Wang, R., Gong, S., Chen, G., & Xu, W. (2019). The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Research and Therapy, 10(1), 377.

Han, Y., Zhang, L., Xing, Y., Zhang, L., Chen, X., Tang, P., & Chen, Z. (2018). Autophagy relieves the function inhibition and apoptosis-promoting effects on osteoblast induced by glucocorticoid. International Journal of Molecular Medicine, 41, 800–808.

Hardy, R. S., Raza, K., & Cooper, M. S. (2020). Therapeutic glucocorticoids: Mechanisms of actions in rheumatic diseases. Nature Reviews Rheumatology, 16, 133–144.

Hardy, R. S., Zhou, H., Seibel, M. J., & Cooper, M. S. (2018). Glucocorticoids and bone: Consequences of endogenous and exogenous excess and replacement therapy. Endocrine Reviews, 39(5), 519–548.

Hartmann, K., Koenen, M., Schauer, S., Wittig-Blaich, S., Ahmad, M., Baschant, U., & Tuckermann, J. P. (2016). Molecular actions of glucocorticoids in cartilage and bone during health, disease, and steroid therapy. Physiological Reviews, 96(2), 409–447.

Haxaire, C., Haÿ, E., & Geoffroy, V. (2016). Runx2 controls bone resorption through the down-regulation of the Wnt pathway in osteoblasts. The American Journal of Pathology, 186(6), 1598–1609.

Hayashi, M., Nakashima, T., Yoshimura, N., Okamoto, K., Tanaka, S., & Takayanagi, H. (2019). Autoregulation of osteocyte Sema3A orchestrates estrogen action and counteracts bone aging. Cell Metabolism, 29(3), 627–637.

Hiramitsu, S., Terauchi, M., & Kubota, T. (2013). The effects of Dickkopf-4 on the proliferation, differentiation, and apoptosis of osteoblasts. Endocrinology, 154(12), 4618–4626.

Huntley, R., Jensen, E., Gopalakrishnan, R., & Mansky, K. C. (2019). Bone morphogenetic proteins. Their role in regulating osteoclast differentiation. Bone Reports, 10, 0207.

Infante, A., & Rodríguez, C. I. (2018). Osteogenesis and aging: Lessons from mesenchymal stem cells. Stem Cell Research and Therapy, 9, 244.

Ito, S., Suzuki, N., Kato, S., Takahashi, T., & Takagi, M. (2007). Glucocorticoids induce the differentiation of a mesenchymal progenitor cell line, ROB-C26 into adipocytes and osteoblasts, but fail to induce terminal osteoblast differentiation. Bone, 40(1), 84–92.

Jann, J., Gascon, S., Roux, S., & Faucheux, N. (2020). Influence of the TGF-β Superfamily on osteoclasts/osteoblasts balance in physiological and pathological bone conditions. International Journal of Molecular Sciences, 21(20), 7597.

Jensen, P. R., Andersen, T. L., Hauge, E. M., Bollerslev, J., & Delaissé, J. M. (2015). A joined role of canopy and reversal cells in bone remodeling – lessons from glucocorticoid-induced osteoporosis, Bone, 73, 16–23.

Jensen, P. R., Andersen, T. L., Søe, K., Hauge, E. M., Bollerslev, J., Amling, M., Barvencik, F., & Delaissé, J.-M. (2011). Premature loss of bone remodeling compartment canopies is associated with deficient bone formation: A study of healthy individuals and patients with Cushing’s syndrome. Journal of Bone and Mineral Research, 27(4), 770–780.

Jia, D., O’Brien, C. A., Stewart, S. A., Manolagas, S. C., & Weinstein, R. S. (2006). Glucocorticoids act directly on osteoclasts to increase their life span and reduce bone density. Endocrinology, 147(12), 5592–5599.

Jo, S., Yoon, S., Lee, S. Y., Kim, S. Y., Park, H., Han, J., Choi, S. H., Han, J. S., Yang, J. H., & Kim, T. H. (2020). DKK1 induced by 1,25D3 is required for the mineralization of osteoblasts. Cells, 9(1), 236.

Johnson, M. L., & Kamel, M. A. (2007). The Wnt signaling pathway and bone metabolism. Current Opinion in Rheumatology, 19(4), 376–382.

Kameo, Y., Miya, Y., Hayashi, M., Nakashima, T., & Adachi, T. (2020). In silico experiments of bone remodeling explore metabolic diseases and their drug treatment. Science Advances, 6(10), eaax0938.

Kanakamedala, A. K., Mahendra, J., Kareem, N., & Mahendra, L. (2019). Osteoclasts: Multifaceted molecule in vesicular trafficking. Journal of Clinical and Diagnostic Research, 13(8), ZE01–ZE05.

Karner, C. M., & Long, F. (2017). Wnt signaling and cellular metabolism in osteoblasts. Cellular and Molecular Life Sciences, 74(9), 1649–1657.

Kelly, A., Bowen, H., Jee, Y. K., Mahfiche, N., Soh, C., Lee, T., Hawrylowicz, C., & Lavender, P. (2008). The glucocorticoid receptor beta isoform can mediate transcriptional repression by recruiting histone deacetylases. The Journal of Allergy and Clinical Immunology, 121(1), 203–208.

Kenkre, J. S., & Bassett, J. (2018). The bone remodelling cycle. Annals of Clinical Biochemistry, 5(3), 308–327.

Kim, H. J., Zhao, H., Kitaura, H., Bhattacharyya, S., Brewer, J. A., Muglia, L. J., Ross, P. F., & Teitelbaum, S. L. (2007). Glucocorticoids and the osteoclast. Annals of the New York Academy of Sciences, 1116, 335–339.

Kim, H. J., Zhao, H., Kitaura, H., Bhattacharyya, S., Brewer, J. A., Muglia, L. J., Ross, F. P., & Teitelbaum, S. L. (2006). Glucocorticoids suppress bone formation via the osteoclast. Journal of Clinical Investigation, 116(8), 2152–2160.

Kim, J. H., & Kim, N. (2016). Signaling pathways in osteoclast differentiation. Chonnam Medical Journal, 52(1), 12–17.

Kitaura, H., Kimura, K., Ishida, M., Kohara, H., Yoshimatsu, M., & Takano-Yamamoto, T. (2013). Immunological reaction in TNF-α-mediated osteoclast formation and bone resorption in vitro and in vivo. Clinical and Developmental Immunology, 2013, 181849.

Klein, G. L. (2015). The effect of glucocorticoids on bone and muscle. Osteoporosis and Sarcopenia, 1(1), 39–45.

Ko, J.-Y., Chuang, P.-C., Ke, H.-J., Chen, Y.-S., Sun, Y.-C., & Wang, F.-S. (2015). MicroRNA-29a mitigates glucocorticoid induction of bone loss and fatty marrow by rescuing Runx2 acetylation. Bone, 81, 80–88.

Komori, T. (2016). Glucocorticoid signaling and bone biology. Hormone and Metabolic Research, 48, 755–763.

Kondo, T., Kitazawa, R., Yamaguchi, A., & Kitazawa, S. (2008). Dexamethasone promotes osteoclastogenesis by inhibiting osteoprotegerin through multiple levels. Journal of Cellular Biochemistry, 103(1), 335–345.

La Corte, R., Trotta, F., & Adami, S. (2010). Glucocorticoid receptors and bone. Current Stem Cell Research and Therapy, 16(32), 3586–3592.

Leightner, A. C., Meyers, C. M. G., Evans, M. D., Mansky, K. C., Gopalakrishnan, R., & Jensen, E. D. (2020). Regulation of osteoclast differentiation at multiple stages by protein kinase D family kinases. International Journal of Molecular Sciences, 21(1056), 1–20.

Li, H., Li, T., Fan, J., Li, T., Fan, L., Wang, S., Weng, X., Han, Q., & Zhao, R. C. (2015). miR-216a rescues dexamethasone suppression of osteogenesis, promotes osteoblast differentiation and enhances bone formation, by regulating c-Cbl-mediated PI3K/AKT pathway. Cell Death and Differentiation, 22(12), 1935–1945.

Li, J., Sarosi, I., Cattley, R. C., Pretorius, J., Asuncion, F., Grisanti, M., Morony, S., Adamu, S., Geng, Z., Qiu, W., Kostenuik, P., Lacey, D. L., Simonet, W. S., Bolon, B., Qian, X., Shalhoub, V., Ominsky, M. S., Zhu Ke, H., Li, X., & Richards, W. G. (2006). Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone, 39(4), 754–766.

Li, Y., Toraldo, G., Li, A., Yang, X., Zhang, H., Qian, W. P., & Weitzmann, M. N. (2007). B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood, 109(9), 3839–3848.

Lian, W. S., Ko, J. Y., Chen, Y. S., Ke, H. J., Hsieh, C. K., Kuo, C. W., Wang, S. Y., Huang, B. W., Tseng, J. G., & Wang, F. S. (2019). MicroRNA-29a represses osteoclast formation and protects against osteoporosis by regulating PCAF-mediated RANKL and CXCL12. Cell Death and Disease, 10(10), 705.

Lin, N. Y., Chen, C. W., Kagwiria, R., Liang, R., Beyer, C., Distler, A., Julia Luther, J., Engelke, K., Schett, G., & Distler, J. H. W. (2016). Inactivation of autophagy ameliorates glucocorticoid‐induced and ovariectomy‐induced bone loss. Annals of the Rheumatic Diseases, 75, 1203–1210.

Liu, S., Zhu, W., Li, S., Ma, J., Zhang, H., Li, Z., Zhang, L., Zhang, B., Li, Z., Liang, X., & Shi, W. (2016). Bovine parathyroid hormone enhances osteoclast bone resorption by modulating V-ATPase through PTH1R. International Journal of Molecular Medicine, 37(2), 284–292.

Lontos, K., Adamik, J., Tsagianni, A., Galson, D. L., Chirgwin, J. M., & Suvannasankha, A. (2018). The role of semaphorin 4D in bone remodeling and cancer metastasis. Frontiers in Endocrinology, 9, 322.

Ma, X., Su, P., Yin, C., Lin, X., Wang, X., Gao, Y., Patil, S., War, A. R., Qadir, A., Tian, Y., & Qian, A. (2020). The roles of FOXO transcription factors in regulation of bone cells function. International Journal of Molecular Sciences, 21(3), 692.

MacDonald, B. T., & He, X. (2012). Frizzled and LRP5/6 receptors for Wnt/beta-catenin signaling. Cold Spring Harbor Perspectives in Biology, 4, a007880.

Mak, W., Shao, X., Dunstan, C. R., Seibel, M. J., & Zhou, H. (2009). Biphasic glucocorticoid-dependent regulation of Wnt expression and its inhibitors in mature osteoblastic cells. Calcified Tissue International, 85, 538–545.

Mandal, C. C., Das, F., Ganapathy, S., Harris, S. E., Choudhury, G. G., & Ghosh-Choudhury, N. (2016). Bone morphogenetic protein-2 (BMP-2) activates NFATc1 transcription factor via an autoregulatory loop involving Smad/Akt/Ca2+ signaling. Journal of Biological Chemistry, 291(3), 1148–1161.

Matsuo, K. (2014) Glucocorticoid and bone. Osteocytic osteolysis: Potential modulation by glucocorticoids. Clinical Calcium, 24(9), 1337–1342.

Matsuo, K., & Irie, N. (2008). Osteoclast-osteoblast communication. Archives of Biochemistry and Biophysics, 473(2), 201–209.

Matsuo, K., & Otaki, N. (2012). Bone cell interactions through Eph/ephrin: Bone modeling, remodeling and associated diseases. Cell Adhesion and Migration, 6, 148–156.

Matsuoka, K., Park, K. A., Ito, M., Ikeda, K., & Takeshita, S. (2014). Osteoclast-derived complement component 3a stimulates osteoblast differentiation. Journal of Bone and Mineral Research, 29(7), 1522–1530.

Mazziotti, G., Formenti, A. M., Adler, R. A., Belizikian, J. P., Grossman, A., Sbardella, E., Minisola, S., & Giustina, A. (2016). Glucocorticoid-induced osteoporosis: Pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine, 54, 603–611.

Mellis, D. J., Itzstein, C., Helfrich, M. H., & Crockett, J. C. (2011). The skeleton: A multi-functional complex organ: The role of key signalling pathways in osteoclast differentiation and in bone resorption. The Journal of Endocrinology, 211(2), 131–143.

Meszaros, K., & Patocs, A. (2020). Glucocorticoids influencing Wnt/β-catenin pathway; multiple sites, heterogeneous effects. Molecules, 25(7), 1489.

Mollazadeh, S., Fazly Bazzaz, B. S., & Kerachian, M. A. (2015). Role of apoptosis in pathogenesis and treatment of bone-related diseases. Journal of Orthopaedic Surgery and Research, 10, 15.

Morel, A., Blangy, A., & Vives, V. (2018). Methods to investigate the role of Rho GTPases in osteoclast function. Methods in Molecular Biology, 1821, 219–233.

Nakashima, T., Hayashi, M., Fukunaga, T., Kurata, K., Oh-Hora, M., Feng, J. Q., Bonewald, L. F., Kodama, T., Wutz, A., Wagner, E. F., Penninger, J. M., & Takayanagi, H. (2011). Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nature Medicine, 17(10), 1231–1234.

Negishi-Koga, T., & Takayanagi, H. (2009). Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunological Reviews, 231(1), 241–256.

Nicolaides, N. C., Galata, Z., Kino, T., Chrousos, G. P., & Charmandari, E. (2010). The human glucocorticoid receptor: Molecular basis of biologic function. Steroids, 75(1), 1–12.

Novack, D. V., & Mbalaviele, G. (2016). Osteoclasts-key players in skeletal health and disease. Microbiology Spectrum, 4(3), 1–31.

Oakley, R. H., & Cidlowski, J. A. (2013). The biology of the glucocorticoid receptor: New signaling mechanisms in health and disease. The Journal of Allergy and Clinical Immunology, 132(5), 1033–1044.

Omi, M., Kaartinen, V., & Mishina, Y. (2019). Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. Journal of Biological Chemistry, 294, 17818–17836.

Panettieri, R. A., Schaafsma, D., Amrani, Y., Koziol-White, C., Ostrom, R., & Tliba, O. (2019). Non-genomic effects of glucocorticoids: An updated view. Trends in Pharmacological Sciences, 40(1), 38–49.

Parfitt, A. (1980). Morphological basis of bone mineral measurements: Transient and steady state effects of treatment in osteoporosis. Mineral and Electrolyte Metabolism, 4, 273–287.

Pathak, J. L., Liu, L., Zhu, Y. Q., & Bureik, M. (2020). Cytochrome P450 expression patterns in human osteoblasts during osteogenic differentiation with or without TNFα treatment. Biopharmaceutics and Drug Disposition, 41(4–5), 184–191.

Peng, M., Wang, Y., Qiang, L., Xu, Y., Li, C., Li, T., Zhou, X., Xiao, M., & Wang, J. (2018). Interleukin-35 inhibits TNF-α-induced osteoclastogenesis and promotes apoptosis via shifting the activation from TNF receptor-associated death domain (TRADD)-TRAF2 to TRADD-Fas-associated death domain by JAK1/STAT1. Frontiers in Immunology, 9, 1417.

Pettita, A. R., Changa, M. K., Humeb, D. A., & Raggatta, L. J. (2008). Osteal macrophages: A new twist on coupling during bone dynamics. Bone, 43(6), 976–978.

Plotkin, L. I., & Bruzzaniti, A. (2019). Molecular signaling in bone cells: Regulation of cell differentiation and survival. Advances in Protein Chemistry and Structural Biology, 116, 237–281.

Plotkin, L. I., Manolagas, S. C., & Bellido, T. (2007). Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival. Evidence for inside-out signaling leading to anoikis. The Journal of Biological Chemistry, 282(33), 24120–24130.

Qi, B., Cong, Q., Li, P., Ma, G., Guo, X., Yeh, J., Xie, M., Schneider, M. D., Liu, H., & Li, B. (2014). Ablation of Tak1 in osteoclast progenitor leads to defects in skeletal growth and bone remodeling in mice. Scientific Reports, 4, 7158.

Rizzoli, R., & Biver, E. (2015). Glucocorticoid-induced osteoporosis: Who to treat with what agent? Nature Reviews Rheumatology, 11(2), 98–109.

Ru, J. Y., & Wang, Y. F. (2020). Osteocyte apoptosis: The roles and key molecular mechanisms in resorption-related bone diseases. Cell Death and Disease, 11(10), 846.

Saag, K. G., Agnusdei, D., Hans, D., Kohlmeier, L. A., Krohn, K. D., Leib, E. S., MacLaughlin, E. J., Alam, J., Simonelli, C., Taylor, K. A., & Marcus, R. (2016). Trabecular bone score in patients with chronic glucocorticoid therapy-induced osteoporosis treated with alendronate or teriparatide. Arthritis and Rheumatology, 68(9), 2122–2128.

Sapir-Koren, R., & Livshits, G. (2014). Osteocyte control of bone remodeling: Is sclerostin a key molecular coordinator of the balanced bone resorption-formation cycles? Osteoporosis International, 25(12), 2685–2700.

Shang, G., Wang, Y., Xu, Y., Zhang, S., Sun, X., Guan, H., Zhao, X., Wang, Y., Li, Y., & Zhao, G. (2018). Long non-coding RNA TCONS_00041960 enhances osteogenesis and inhibits adipogenesis of rat bone marrow mesenchymal stem cell by targeting miR-204-5p and miR-125a-3p. Journal of Cellular Physiology, 233(8), 6041–6051.

Shapiro, I. M., Layfield, R., Lotz, M., Settembre, C., & Whitehouse, C. (2014). Boning up on autophagy: The role of autophagy in skeletal biology. Autophagy, 10, 7–19.

Shen, G., Ren, H., Shang, Q., Qiu, T., Yu, X., Zhang, Z., Huang, J., Zhao, W., Zhang, Y., Liang, D., & Jiang, X. (2018). Autophagy as a target for glucocorticoid-induced osteoporosis therapy. Cellular and Molecular Life Sciences, 75, 2683–2693.

Shi, C., Huang, P., Kang, H., Hu, B., Qi, J., Jiang, M., Zhou, H., Guo, L., & Deng, L. (2015a). Glucocorticoid inhibits cell proliferation in differentiating osteoblasts by microRNA-199a targeting of WNT signaling. Journal of Molecular Endocrinology, 54(3), 325–337.

Shi, C., Zhang, H., Louie, K., Mishina, Y., & Sun, H. (2017). BMP signaling mediated by BMPR1A in osteoclasts negatively regulates osteoblast mineralization through suppression of Cx43. Journal of Cellular Biochemistry, 118(3), 605–614.

Shi, J., Wang, L., Zhang, H., Jie, Q., Li, X., Shi, Q., Huang, Q., Gao, B., Han, Y., Guo, K., Liu, J., Yang, L., & Luo, Z. (2015b). Glucocorticoids: Dose-related effects on osteoclast formation and function via reactive oxygen species and autophagy. Bone, 79, 222–232.

Siddiqui, J. A., & Partridge, N. C. (2016). Physiological bone remodeling: Systemic regulation and growth factor involvement. Physiology, 31(3), 233–245.

Sims, N. A., & Martin, T. J. (2014). Coupling the activities of bone formation and resorption: A multitude of signals within the basic multicellular unit. BoneKEy Reports, 3, 481.

Sinder, B. P., Pettit, A. R., & McCauley, L. K. (2015). Macrophages: Their emerging roles in bone. Journal of Bone and Mineral Research, 30, 2140–2149.

Smith, L. K., & Cidlowski, J. A. (2010). Glucocorticoid-induced apoptosis of healthy and malignant lymphocytes. Progress in Brain Research, 182, 1–30.

Søe, K. (2020). Osteoclast fusion: Physiological regulation of multinucleation through heterogeneity-potential implications for drug sensitivity. International Journal of Molecular Sciences, 21(20), 7717.

Soysa, N. S., & Alles, N. (2019). Positive and negative regulators of osteoclast apoptosis. Bone Reports, 11, 100225.

Sun, M., Zhou, X., Chen, L., Huang, S., Leung, V., Wu, N., Pan, H., Zhen, W., Lu, W., & Peng, S. (2016). The regulatory roles of microRNAs in bone remodeling and perspectives as biomarkers in osteoporosis. BioMed Research International, 2016, 1652417.

Szappanos, A., Patócs, A., Tõke, J., Boyle, B., Sereg, M., Majnik, J., Borgulya, G., Varga, I., Likó, I., Rácz, K., & Tóth, M. (2009). BclI polymorphism of the glucocorticoid receptor gene is associated with decreased bone mineral density in patients with endogenous hypercortisolism. Clinical Endocrinology, 71(5), 636–643.

Tasca, A., Astleford, K., Blixt, N. C., Jensen, E. D., Gopalakrishnan, R., Mansky, K. C. (2018) SMAD1/5 signaling in osteoclasts regulates bone formation via coupling factors. PLoS One, 13(9), e0203404.

Teitelbaum, S. L. (2015). Glucocorticoids and the osteoclast. Clinical and Experimental Rheumatology, 33(4, Suppl. 92), S37–S39.

Todosenko, N. M., Koroleva, Y. A., Khaziakhmatova, O. G., Yurova, K. A., & Litvinova, L. S. (2017). Genomic and non-genomic effects of glucocorticoids [Genomnye i negenomnye effekty glyukokortikoidov]. Genes and Cells, 12(1), 27–33 (in Russian).

Ton, F. N., Gunawardene, S. C., Lee, H., & Neer, R. M. (2005). Effects of low-dose prednisone on bone metabolism. Journal of Bone and Mineral Research, 20(3), 464–470.

Tong, X., Gu, P. C., Xu, S. Z., & Lin, X. J. (2015). Long non-coding RNA-DANCR in human circulating monocytes: A potential biomarker associated with postmenopausal osteoporosis. Bioscience, Biotechnology, and Biochemistry, 79, 732–737.

Topol, L., Jiang, X., Choi, H., Garrett-Beal, L., Carolan, P. J., & Yang, Y. (2003). Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. The Journal of Cell Biology, 162(5), 899–908.

Tseng, W. P., Yang, S. N., Lai, C. H., & Tang, C. H. (2010). Hypoxia induces BMP-2 expression via ILK, Akt, mTOR, and HIF-1 pathways in osteoblasts. Journal of Cellular Physiology, 223(3), 810–818.

Uehara, S., Udagawa, N., & Kobayashi, Y. (2019). Regulation of osteoclast function via Rho-Pkn3-c-Src pathways. Journal of Oral Biosciences, 61(3), 135–140.

Varelas, X., Samavarchi-Tehrani, P., Narimatsu, M., Weiss, A., Cockburn, K., Larsen, B. G., Rossant, J., & Wrana, J. L. (2010). The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Developmental Cell, 19(6), 831–844.

Wang, F. S., Chuang, P. C., Lin, C. L., Chen, M. W., Ke, H. J., Chang, Y. H., Chen, Y. S., Wu, S. L., & Ko, J. Y. (2013). MicroRNA-29a protects against glucocorticoid-induced bone loss and fragility in rats by orchestrating bone acquisition and resorption. Arthritis and Rheumatism, 65(6), 1530–1540.

Wang, H., Yang, G., Xiao, Y., Luo, G., Li, G., & Li, Z. (2020). Friend or foe? Essential roles of osteoclast in maintaining skeletal health. BioMed Research International, 2020, 4791786.

Wang, L., Heckmann, B. L., Yang, X., & Long, H. (2019a). Osteoblast autophagy in glucocorticoid-induced osteoporosis. Journal of Cellular Physiology, 234(4), 3207–3215.

Wang, T., Yu, X., & He, C. (2019b). Pro-inflammatory cytokines: Cellular and molecular drug targets for glucocorticoid-induced-osteoporosis via osteocyte. Current Drug Targets, 20(1), 1–15.

Wang, Y., Luo, T. B., Liu, L., & Cui, Z. Q. (2018). LncRNA LINC00311 Promotes the proliferation and differentiation of osteoclasts in osteoporotic rats through the notch signaling pathway by targeting DLL3. Cellular Physiology and Biochemistry, 47(6), 2291–2306.

Wegler, C., Wikvall, K., & Norlin, M. (2016). Effects of osteoporosis‐inducing drugs on vitamin D‐related gene transcription and mineralization in MG-63 and Saos-2 cells. Basic and Clinical Pharmacology and Toxicology, 119(5), 436–442.

Weinstein, R. S. (2007). Is long-term glucocorticoid therapy associated with a high prevalence of asymptomatic vertebral fractures? Nature clinical practice. Endocrinology and Metabolism, 3(2), 86–87.

Wu, A. C., Raggatt, L. J., Alexander, K. A., & Pettit, A. R. (2013). Unraveling macrophage contributions to bone repair. BoneKEy Reports, 2, 373.

Wu, X., Pan, G., McKenna, M. A., Zayzafoon, M., Xiong, W. C., & McDonald, J. M. (2005). RANKL regulates Fas expression and Fas-mediated apoptosis in osteoclasts. Journal of Bone and Mineral Research, 20(1), 107–116.

Xie, J., Guo, J., Kanwal, Z., Wu, M., Lv, X., Ibrahim, N. A., Li, P., Buabeid, M. A., Arafa, E.-S. A., & Sun, S. (2020). Calcitonin and bone physiology: In vitro, in vivo, and clinical investigations. International Journal of Endocrinology, 2020, 3236828.

Xie, Y., Zhang, L., Gao, Y., Ge, W., & Tang, P. (2015). The multiple roles of microrna-223 in regulating bone metabolism. Molecules, 20(10), 19433–19448.

Xu, W. N., Zheng, H. L., Yang, R. Z., Jiang, L. S., & Jiang, S. D. (2020). HIF-1α regulates glucocorticoid-induced osteoporosis through PDK1/AKT/mTOR signaling pathway. Frontiers in Endocrinology, 10, 922.

Yamakawa, T., Okamatsu, N., Ishikawa K., Kiyohara, S., Handa, K., Hayashi, E., Sakai, N., Karakawa, A., Chatani, M., Tsuji, M., Inagaki, K., Kiuchi, Y., Negishi-Koga, T., & Takami, M. (2020). Novel gene Merlot inhibits differentiation and promotes apoptosis of osteoclasts, Bone, 2020, 115494.

Yao, W., Dai, W., Jiang, J. X., & Lane, N. E. (2013). Glucocorticoids and osteocyte autophagy. Bone, 54(2), 279–284.

Yoon, J. H., Abdelmohsen, K., & Gorospe, M. (2014). Functional interactions among microRNAs and long noncoding RNAs. Seminars in Cell and Developmental Biology, 34, 9–14.

Zanotti, S., & Canalis, E. (2016). Notch signaling and the skeleton. Endocrine Reviews, 37(3), 223–253.

Zanotti, S., Yu, J., Adhikari, S., & Canalis, E. (2018). Glucocorticoids inhibit notch target gene expression in osteoblasts. Journal of Cellular Biochemistry, 119(7), 6016–6023.

Zarei, A., Morovat, A., Javaid, K., & Brown, C. P. (2016). Vitamin D receptor expression in human bone tissue and dose-dependent activation in resorbing osteoclasts. Bone Research, 4, 16030.

Zayny, A., Almokhtar, M., Wikvall, K., Ljunggren, Ö., Ubhayasekera, K., Bergquist, J., Kibar, P., & Norlin, M. (2019). Effects of glucocorticoids on vitamin D3-metabolizing 24-hydroxylase (CYP24A1) in Saos-2 cells and primary human osteoblasts. Molecular and Cellular Endocrinology, 496, 110525.

Zhang, L., Su, P., Xu, C., Chen, C., Liang, A., Du, K., Peng, Y., & Huang, D. (2010). Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing PPARγ expression and enhancing Runx2 expression. Journal of Pineal Research, 49(4), 364–372.

Zhang, X. Y., Shan, H. J., Zhang, P., She, C., & Zhou, X. Z. (2018). LncRNA EPIC1 protects human osteoblasts from dexamethasone-induced cell death. Biochemical and Biophysical Research Communications, 503(4), 2255–2262.

Zhang, Y., Cao, X., Li, P., Fan, Y., Zhang, L., Ma, X., Sun, R., Liu, Y., & Li, W. (2020). LncRNA NKILA integrates RXFP1/AKT and NF-κB signalling to regulate osteogenesis of mesenchymal stem cells. Journal of Cellular and Molecular Medicine, 24(1), 521–529.

Zhao, R., Tao, L., Qiu, S., Shen, L., Tian, Y., Gong, Z., Tao, B. Z., & Zhu, Y. (2020a). Melatonin rescues glucocorticoid-induced inhibition of osteoblast differentiation in MC3T3-E1 cells via the PI3K/AKT and BMP/Smad signalling pathways. Life Sciences, 118044.

Zhao, W., Wang, G., Zhou, C., & Zhao, Q. (2020). The regulatory roles of long noncoding RNAs in osteoporosis. American Journal of Translational Research, 12(9), 5882–5907.

Zuo, B., Zhu, J., Li, J., Wang, C., Zhao, X., Cai, G., Li, Z., Peng, J., Wang, P., Shen, C., Huang, Y., Xu, J., Zhang, X., & Chen, X. (2015). microRNA-103a functions as a mechanosensitive microRNA to inhibit bone formation through targeting Runx2. Journal of Bone and Mineral Research, 30(2), 330–345.

Published
2021-05-03
How to Cite
Povoroznyuk, V. V., Dedukh, N. V., Bystrytska, M. A., & Shapovalov, V. S. (2021). Bone remodeling stages under physiological conditions and glucocorticoid in excess: Focus on cellular and molecular mechanisms . Regulatory Mechanisms in Biosystems, 12(2), 212-227. https://doi.org/10.15421/022130