Biochemical characterization of fruits of Lycium spp. in Ukraine

  • M. Zhurba M. M. Gryshko National Botanical Garden of Ukraine
  • O. Vergun M. M. Gryshko National Botanical Garden of Ukraine
  • S. Klymenko M. M. Gryshko National Botanical Garden of Ukraine
  • I. Szot University of Life Sciences
Keywords: goji berry; cultivars; varieties; fruits; biochemical composition.

Abstract

Fruits of Lycium possess therapeutic properties due to which they are used in traditional and folk medicine and can be used as a kind of functional food. The objective of this study was to evaluate the biochemical characterization of Lycium L. (L. barbarum L., L. chinense Mill. and L. truncatum Y. C. Wang) fruits for 16 cultivars and varieties from the collections in the M. M. Gryshko National Botanical Garden of NAS of Ukraine (Kyiv). This study was aimed at determining the concentration of nutrients in the Lycium fruits. Individual genotypes of three Lycium species: L. barbarum, L.chinense, and L. truncatum, differed in such features as the content of dry matter, sugars, vitamin C, β-carotene, acidity, and tannins in the fruit. Fruits of Lycium spp. are a valuable source of nutrients such as vitamin C (4.38–121.0 mg 100g–1 FW), β-carotene content (1.45–5.52%), and tannin (0.12–1.34%). The sugar content (13.83–20.87%) and acidity of the fruit (0.23–4.62%) meet the consumers' requirements for fresh fruit. The cultivar Amber Sweet (L. chinense) had fruits of which the similarities between biochemical characteristics of different studies genotypes were the lowest. The cv. Amber Sweet was characterized by fruit with high sugar content, very high vitamin C content, average acid content, low tannins and β-carotene content, and the lowest dry matter content. Furthermore, a distinctive feature of the other tested genotypes was the yellow colour of the fruit. The data obtained can be used for further selective work.

References

Adiletta, G., Alamb, M. R., Cinquanta, L., Russoc, P., Albanesea, D., Matteo, M. D. (2015). Effect of abrasive pretreatment on hot dried goji berry. Chemical Engineering Transactions, 44, 127–132.

Amagase, H., & Farnsworth, N. R. (2011). A review of botanical characteristics, phytochemistry, clinical relevance in efficacy and safety of Lycium barbarum fruit (Goji). Food Research International, 44(7), 1702–1717.

Ashoor, S. H., & Knox, J. M. (1982). Determination of organic acids in foods by high-performance liquid chromatography. Journal of Chromatography, 299, 288–292.

Britton, G., Liaaen-Jensen, S., & Pfander, H. (2004). Carotenoids handbook. Birkhauser Verlag, Basel, Boston, Berlin.

Chang, J., Zhou, Z.-W., Sheng, H.-P., He, L.-J., Fan, X.-W., He, Z.-X., Sun, T., Zhang, X., Zhao, R. J., Gu, L., Cao, C., & Zhou, S.-F. (2015). An evidence-based update on the pharmacological activities and possible molecular targets of Lycium barbarum polysaccharides. Drug Design, Development and Therapy, 9, 33–78.

Chang, R. C.-C., & So, K.-F. (2015). Lycium barbarum and human health. Springer Netherlands.

Chen, P.-Y., Shih, T.-H., Chang, K.-C., Wang, J.-S., Yang, C.-M., & Chang, Y.-S. (2020). Potential of galled leaves of Goji (Lycium chinense) as functional food. BMC Nutrition, 6, 26.

Çolak, A. M., Okatan, V., Polat, M., & Güçlü, S. F. (2019). Different harvest times affect market quality of Lycium barbarum L. berries. Turkish Journal of Agriculture and Forestry, 43, 326–333.

Cumaoglu, A., Bekci, H., Ozturk, E., Yerer, M. B., Baldemir, A., & Bishayee, A. (2018). Goji berry fruit extracts suppress proliferation of triple-negative breast cancer cells by inhibiting EGFR-Mediated ERK/MAPK and PI3K/Akt signaling pathways. Natural Product Communications, 13(6), 701–706.

Dar, M. A., Wani, J. A., Raina, S. K., Bhat, M. Y., & Malik, M. A. (2014). Relationship of leaf nutrient content with fruit yield and quality of pear. Journal of Environmental Biology, 36, 649–653.

De Azevedo, C. H., & Rodriguez-Amaya, D. B. (2005). Carotenoid composition of kale as influenced by maturity, season and minimal processing. Science of Food and Agriculture, 85, 591–597.

Diep, T. T., Pook, C., Rush, E. C., & Yoo, M. J. Y. (2020). Quantification of carotenoids, α-tocopherol, and ascorbic acid in Amber, Mulligan, and Laird’s large cultivars of New Zealand Tamarillos (Solanum betaceum Cav.). Foods, 9, 769.

Donno, D., Beccaro, G. L., Mellano, M. G., Cerutti, A. K., & Bounous, G. (2014). Goji berry fruit (Lycium spp.): Antioxidant compound fingerprint and bioactivity evaluation. Journal of Functional Foods, 18, 1070–1085.

Drogoudi, P., Gerasopoulos, D., Kafkaletou, M., & Tsantili, E. (2017). Phenotypic characterization of qualitative parameters and antioxidant contents in peach and nectarine fruit and changes after jam preparation. Journal of the Science of Food and Agriculture, 97, 3374–3383.

Dumont, D., Danielato, G., Chastellier, A., Hibrand Saint Oyant, L., Fanciullino, A.-L., & Lugan, R. (2020). Multi-targeted metabolic profiling of carotenoids, phenolic compounds and primarymetabolites in goji (Lycium spp.) berry and tomato (Solanum lycopersicum) reveals inter and intra genus biomarkers. Metabolites, 10, 422.

Emine Kocyigit, N. S. (2017). A review of composition and health effects of Lycium barbarum. International Journal of Chinese Medicine, 1(1), 1–9.

Fattore, M., Montesano, D., Pagano, E., Teta, R., Borrelli, F., Mangoni, A., Seccia, S., & Albrizio, S. (2016). Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. Journal of Food Composition and Analysis, 53, 61–68.

Fourie, P. C. (1996). Fruit and human nutrition. In: Arthey, D., Ashurst, P. R. (Eds.). Fruit processing. Springer, Boston.

Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43, 228–265.

Gong, R. G., & Zhang, G. L. (2003). Advances in research on sugar metabolism in citrus fruit. Journal of Sichuan Agricultural University, 21, 343–346.

Grembecka, M., & Szefer, P. (2013). Comparative assessment of essential and heavy metals in fruits from different geographical origins. Environmental Monitoring and Assessment, 185, 9139–9160.

Grygorieva, O., Klymenko, S., Brindza, J., Schubertová, Z., Nikolaieva, N., & Šimková, J. (2017). Morphometric characteristics of sweet chestnut (Castanea sativa Mill.) fruits. Potravinarstvo Slovak Journal of Food Sciences, 11(1), 288–295.

Grygorieva, O., Klymenko, S., Ilinska, A., & Brindza, J. (2018a). Variation of fruits morphometric parameters of Elaeagnus multiflora Thunb. germplasm collection. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 527–532.

Grygorieva, O., Klymenko, S., Vergun, O., Shelepova, O., Vinogradova, Y., Ilinska, A., Horčinová Sedláčková, V., & Brindza, J. (2020). Chemical composition of leaves of Chinese quince (Pseudocydonia sinensis (Thouin) C. K. Schneid.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, (4), 78–93.

Grygorieva, O., Klymenko, S., Vinogradova, Y., Vergun, O., & Brindza, J. (2018b). Variation in morphometric traits of fruits of Mespilus germanica L. Potravinarstvo Slovak Journal of Food Sciences, 12(1), 782–788.

Grygorieva, O., Kucharska, A. Z., Piórecki, N., Klymenko, S., Vergun, O., & Brindza, J. (2018c). Antioxidant activities and phenolic compounds in fruits of various genotypes of American persimmon (Diospyros virginiana L.). Acta Scientiarum Polonorum Technologia Alimentaria, 17(2), 117–124.

Grygorieva, O., Vergun, O., Klymenko, S., Zhurba, M., Horčinová Sedláčková, V., Ivanišová, E., & Brindza, J. (2020). Estimation of phenolic compounds content and antioxidant activity of leaves extracts of some selected non-traditional plants. Potravinarstvo Slovak Journal of Food Sciences, 14, 501–509.

Harker, F. R., Carr, B. T., Lenjo, M., MacRae, E. A., Wismer, W. V., Marsh, K. B., Williamsa, M., White, A., Lunda, C. M., Walkera, S. B., Gunson, F. A., & Pereira, R. B. (2009). Consumer liking for kiwifruit flavour: A meta-analysis of five studies on fruit quality. Food Quality and Preference, 20, 30–41.

Hecke, K., Herbinger, K., Veberic, R., Trobec, M., Tolpak, H., Stampar, F., Keppel, H., & Grill, D. (2006). Sugar-, acid and phenol contents in apple cultivars from organic and integrated fruit cultivation. European Journal of Clinical Nutritional, 60, 1136–1140.

Horčinová Sedláčková, V., Grygorieva, O., Fatrcová Šramková, K., Vergun, O., Vinogradova, Y., Ivanišová, E., & Brindza, J. (2018). The morphological and antioxidant characteristics of inflorescences within wild-growing genotypes of elderberry (Sambucus nigra L.). Potravinarstvo Slovak Journal of Food Sciences, 12(1), 444–453.

Horčinová Sedláčková, V., Grygorieva, O., Vergun, O. M., Vinogradova, J. K., & Brindza, J. (2019). Comparison of selected characteristics of cultivars and wild-growing genotypes of Sambucus nigra in Slovakia. Biosystems Diversity, 27, 56–61.

Illić, T., Dodevska, M., Marčetić, M., Božić, D., Kodranov, I., & Vidović, B. (2020). Chemical characterization, antioxidant and antimicrobial properties of goji berries cultivated in Serbia. Foods, 9(11), 1614.

Ivanišová, E., Grygorieva, O., Abrahamová, V., Schubertova, Z., Terentjeva, M., & Brindza, J. (2017). Characterization of morphological parameters and biological activity of jujube fruit (Ziziphus jujuba Mill.). Journal of Berry Research, 7(4), 249–260.

Jatoi, M. A., Fruk, M., Buhin, J., Vinceković, M., Vuković, M., & Jemrić, T. (2017). Effect of different storage temperatures on storage life, physico-chemical and sensory attributes of goji berry (Lycium barbarum L.) fruits. Erwerbs-Obstbau, 60(2), 119–126.

Kafkaletou, M., Christopoulos, M. V., & Tsantili, E. (2017). Short term treatments with high CO2 and low O2 concentrations on quality of fresh goji berries (Lycium barbarum L.) during cold storage. Journal of the Science of Food and Agriculture, 97, 5194–5201.

Kafkaletou, M., Christopoulos, M. V., Tsaniklidis, G., Papadakis, I., Ioannou, D., Tzoutzoukou, C., & Tsantili, E. (2018). Nutritional value and consumer-perceived quality of fresh goji berries (Lycium barbarum L. and L. chinense L.) from plants cultivated in Southern Europe. Fruits, 73, 5–12.

Karioti, A., Bergonzi, M. C., Vincieri, F. F., & Bilia, A. R. (2014). Validated method for the analysis of goji berry, a rich source of zeaxanthin dipalmitate. Journal of Agricultural and Food Chemistry, 62, 12529–12535.

Klymenko, S., Grygorieva, O., & Brindza, J. (2017). Less known species of fruit crops. Slovak University of Agriculture in Nitra, Nitra.

Klymenko, S., Kucharska, A. Z., Sokół-Łętowska, A., & Piórecki, N. (2019). Antioxidant activities and phenolic compounds in fruits of cultivars of cornelian cherry (Cornus mas L.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, 3, 484–499.

Konarska, A. (2018). Microstructural and histochemical characteristics of Lycium barbarum L. fruits used in folk herbal medicine and as functional food. Protoplasma, 255, 1839–1854.

Krischenko, V. P. (1983). Metody ocenki kachestva rastitelnoy produkcii [Methods for evaluation of quality of plant production]. Kolos, Moscow (in Russian).

Kulaitiene, J., Vaitkeviciene, N., Jariene, E., Cerniauskiene, J., Jeznach, M., & Paulauskiene, A. (2020). Concentrations of minerals, soluble solids, vitamin C, carotenoids and toxigenic elements in organic goji berries (Lycium barbarum L.) cultivated in Lithuania. Biological Agriculture and Horticulture, 36(2), 130–140.

Lee, H. W., Kim, Y. H., Kim, Y. H., Lee, G. H., & Lee, M. Y. (2014). Discrimination of Lycium chinense and Lycium barbarum by taste pattern and betaine analysis. International Journal of Clinical and Experimental Medicine, 7(8), 2053–2059.

Li, Z., Peng, G., Chen, L., & Zhang, S. (1997). Determination of beta-carotene in Fructus lycii by nonaqueous reversed-phase high performance liquid chormatography. Chinese Journal of Chromatography, 15, 537–538.

Liu, Y., Lv, J., Yang, B., Liu, F., Tian, Z., Cai, Y., Yang, D., Ouyang, J., Sun, F., Shi, Y., & Xia, P. (2015). Lycium barbarum polysaccharide attenuates type II collagen-induced arthritis in mice. International Journal of Biological Macromolecules, 78, 318–323.

Liu, Y., Zeng, S., Sun, W., Wu, M., Hu, W., Shen, X., & Wang, Y. (2014). Comparative analysis of carotenoid accumulation in two goji (Lycium barbarum L. and L. ruthenicum Murr.) fruits. BMC Plant Biology, 14, 269.

Lu, Y. M., & Zhang, D. P. (2000). Accumulation of sugars in developing fruits. Plant Physiology Communications, 36, 258–265.

Luo, Q., Cai, Y., Yan, J., Sun, M., & Corke, H. (2004). Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sciences, 76(2), 137–149.

Matias, R. G. P., Silva, D. F. P., Miranda, P. M. D., Oliveira, J. A. A., Pimentel, L. D., & Bruckner, C. H. (2016). Relationship between fruit traits and contents of ascorbic acid and carotenoids in peach. Crop Breeding and Applied Biotechnology, 16, 348–354.

Merzlyak, M. N., Solovchenko, A. E., & Chivkunova, O. B. (2002). Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development. Plant Physiology and Biochemistry, 40, 679–684.

Mikulic-Petkovsek, M., Schmitzer, V., Slatnar, A., Stampar, F., & Veberic, R. (2012). Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. Journal of Food Science, 77, 1064.

Monka, A., Grygorieva, O., Chlebo, P., & Brindza, J. (2014). Morphological and antioxidant characteristics of quince (Cydonia oblonga Mill.) and chinese quince fruit (Pseudocydonia sinensis Schneid.). Potravinarstvo Slovak Journal of Food Sciences, 8(1), 333–340.

Montesano, D., Cossignani, L., Giua, L., Urbani, E., Simonetti, M. S., & Blasi, F. (2016). A simple HPLC-ELSD method for sugar analysis in gojyberry. Journal of Chemistry, 2016, 6271808.

Montesano, D., Fallarino, F., Cossignani, L., Bosi, A., Simonetti, M. S., Puccetti, P., & Damiani, P. (2008). Innovative extraction procedure for obtaining high pure lycopene from tomato. European Food Research and Technology, 226, 327–335.

Montesano, D., Juan-García, A., Mañes, J., & Juan, C. (2020). Chemoprotective effect of carotenoids from Lycium barbarum L. on SH-SY5Y neuroblastoma cells treated with beauvericin. Food and Chemical Toxicology, 141, 111414.

Montesano, D., Rocchetti, G., Cossignani, L., Lucini, L., Simonetti, M. S., & Blasi, F. (2018). Italian Lycium barbarum L. berry: Chemical characterization and nutraceutical value. Natural Product Communications, 13, 1151–1156.

Mordente, A., Guantario, B., Meucci, E., Silvestrini, A., Lombardi, E., Martorana, G. E., Giardina, B., & Bohm, V. (2011). Lycopene and cardiovascular diseases: An update. Current Medicinal Chemistry, 18(8), 1146–1163.

Nien-Chen, L., Jing-Chi, L., Shih-Hsin, C., Chi-Tang, H., & An, I. Y. (2011). Effect of Goji (Lycium barbarum) on expression of genes related to cell survival. Journal of Agricultural and Food Chemistry, 59(18), 10088–10096.

Niro, S., Fratianni, A., Panfili, G., Falasca, L., Cinquanta, L., & Alam, M. R. (2017). Nutritional evaluation of fresh and dried goji berries cultivated in Italy. Italian Journal of Food Science, 29(3), 398–408.

Ogbonna, O. A., Ohia, G. U., Ikeyi, A. P., & Okoye, N. H. (2016). Glycoside, moisture and dry matter composition fruits of three Musa species at three stages of development. Journal of Pharmacy and Biological Sciences, 11(3), 60–67.

Palmer, J. W., Harker, F. R., Tustin, D. S., & Johnston, J. (2010). Fruit dry matter concentration: A new quality metric for apples. Journal of the Science of Food and Agriculture, 90(15), 2586–2594.

Pisocschi, A. M., Danet, A. F., & Kalinowski, S. (2008). Ascorbic acid determination in commercial fruit juice samples by cyclic voltammetry. Journal of Automated Methods and Management in Chemistry, 2008, 937651.

Pleshkov, B. P. (1985). Prakticum po biohimii rasteniy [Plant biochemistry workshop]. Kolos, Moscow (in Russian).

Polat, M., Mertoglu, K., Eskimez, I., & Okatan, V. (2020). Effects of the fruiting period and growing seasons on market quality in goji berry (Lycium barbarum L.). Folia Horticulturae, 32(2), 1–11.

Potterat, O. (2010). Goji (Lycium barbarum and L. chinense): Phytochemistry, pharmacology and safety in the perspective of traditional uses and recent popularity. Planta Medica, 76(1), 7–19.

Qian, D., Yang, J., Kang, L., Ji, R., & Huang, L. (2017). Variation of sweet chemicals in different ripening stages of wolfberry fruits. Chinese Herbal Medicines, 9(4), 329–334.

Rao, A., & Rao, L. (2007). Carotenoids and human health. Pharmacological Research, 55, 207–216.

Sabour-Pickett, S., Nolan, J. M., Loughman, J., & Beatty, S. (2012). A review of the evidence germane to the putative protective role of the macular carotenoids for age-related macular degeneration. Molecular Nutrition and Food Research, 56, 270–286.

Szot, I., Zhurba, M., & Klymenko, S. (2020). Pro-health and functional properties of goji berry (Lycium spp.). Agrobiodiversity for Improving Nutrition, Health and Life Quality, 4, 134–145.

Tang, W. M., Chan, E., Kwok, C. Y., Lee, Y. K., Wu, J. H., Wan, C. W., Chan, R. Y. K., Yu, P. H. F., & Chan, S. W. (2012). A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology, 20(6), 307–314.

Vinogradova, Y., Vergun, O., Grygorieva, O., Ivanišová, E., & Brindza, J. (2020). Comparative analysis of antioxidant activity and phenolic compounds in the fruits of Aronia spp. Potravinarstvo Slovak Journal of Food Sciences, 14, 393–401.

Vulić, J. J., Čanadanović-Brunet, J. M., Ćetković, G. S., Djilas, S. M., Tumbas Šaponjac, V. T., & Stajčić, S. S. (2016). Bioactive compounds and antioxidant properties of goji fruits (Lycium barbarum L.) cultivated in Serbia. Journal of the American College of Nutrition, 35(8), 692–698.

Wallace, T. C., Bailey, R. L., Blumberg, J. B., Burton-Freeman, B., Chen, C. O., Crowe-White, K. M., Drewnowski, A., Hooshmand, S., Johnson, E., Lewis, R., Murray, R., Shapses, S. A., & Wang, D. D. (2020). Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Critical Reviews in Food Science and Nutrition, 60(13), 217–221.

Wang, C. C., Chang, S. C., Inbaraj, B. S., & Chen, B. H. (2010). Isolation of carotenoids, flavonoids and polysaccharides from Lycium barbarum L. and evaluation of antioxidant activity. Food Chemistry, 120(1), 184–192.

Wang, S., Suh, J. H., Zheng, X., Wang, Y., & Ho, C. T. (2017). Identification and quantification of potential anti-inflammatory hydroxycinnamic acid amides from wolfberry. Journal of Agricultural and Food Chemistry, 65(2), 364–372.

Weber, D., & Grune, T. (2012). The contribution of β-carotene to vitamin A supply of humans. Molecular Nutrition and Food Research, 56, 251–258.

Weller, P., & Breithaupt, D. E. (2003). Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry. Journal of Agricultural and Food Chemistry, 51(24), 7044–7049.

Wojdyło, A., Nowicka, P., & Babelewski, P. (2018). Phenolic and carotenoid profile of new goji cultivars and their anti-hyperglycemic, anti-aging and antioxidant properties. Journal of Functional Foods, 48, 632–642.

Wu, B. H., Zhao, J. B., Chen, J., Xi, H. F., Jiang, Q., & Li, S. H. (2012). Maternal inheritance of sugars and acids in peach (P. persica (L.) Batsch) fruit. Euphytica, 188, 333–345.

Xie, C., Xu, L. Z., Li, X. M., Li, K. M., Zhao, B. H., & Yang, S. L. (2001). Studies on chemical constituents in fruit of Lycium barbarum L. China Journal of Chinese Materia Medica, 26(5), 323–324.

Yao, R., Heinrich, M., & Weckerle, C. S. (2018). The genus Lycium as food and medicine: A botanical, ethnobotanical and historical review. Journal of Ethnopharmacology, 212, 50–66.

Yossa Nzeuwa, I. B., Guo, B., Zhang, T., Wang, L., Ji, Q., Xia, H., & Sun, G. (2019). Comparative metabolic profiling of lycium fruits (Lycium barbarum and Lycium chinense) from different areas in China and from Nepal. Journal of Food Quality, 2019, 1–6.

Zhang, Q., Chen, W., Zhao, J., & Xi, W. (2016). Functional constituents and antioxidant activities of eight Chinese native goji genotypes. Food Chemistry, 200, 230–236.

Zhao, J., Li, H., Xi, W., An, W., Niu, L., Cao, Y., & Yin, Y. (2015). Changes in sugars and organic acids in wolfberry (Lycium barbarum L.) fruit during development and maturation. Food Chemistry, 173, 718–724.

Zheng, G. Q., Zheng, Z. Y., Xu, X., & Hu, Z. H. (2010). Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochemical Systematics and Ecology, 38, 275–284.

Published
2021-02-24
How to Cite
Zhurba, M., Vergun, O., Klymenko, S., & Szot, I. (2021). Biochemical characterization of fruits of Lycium spp. in Ukraine . Regulatory Mechanisms in Biosystems, 12(1), 71-77. https://doi.org/10.15421/022111