In vitro synergy testing of prodigiosin in combination with inhibitors of cell wall synthesis against Mycobacterium smegmatis

Keywords: natural pigment; antibiotics; outer membrane; peptidoglycan; combination activity.

Abstract

The cell wall is not a target of currently used therapeutics as Mycobacterium are considered naturally resistant to most β-lactam antibiotics. Therefore, combinations of conventional antibiotics with antibiotic activity-enhancing compounds offer a productive treatment strategy and address the widespread emergence of antibiotic-resistant strains. The first area of research was the study of a comparative analysis of disk diffusion testing and the broth dilution method for evaluating the susceptibility of M. smegmatis to antimicrobial agents. A comparative analysis of the susceptibility to antimicrobial agents alone showed that M. smegmatis was the most susceptible to ceftriaxone and kanamycin, and moderately sensitive to vancomycin and prodigiosin. Compared to the susceptibility of the antibacterial combinations, the isolate was not susceptible to antibacterial combinations with prodigiosin in disk diffusion testing. The second area of research was the study of the synergic activity of prodigiosin of S. marcescens and inhibitors of cell wall synthesis manifested by their simultaneous effect on M. smegmatis. The greatest increase in the sensitivity of test-culture of mycobacteria occurred with ampicillin, benzylpenicillin, cephazolin and ceftriaxone in combination with prodigiosin of S. marcescens. The presented combination of antibiotics and prodigiosin reduce the required concentration of the antibiotic and by amplifying the effect of compounds inhibiting cell wall synthesis, thereby giving lower FICI values. These data indicate the possibility of using prodigiosin as a promising candidate for the development of "accompaniment-preparations" for antibiotics for the additional therapy of infectious diseases caused by Mycobacterium spp. and can suspend the likelihood of developing resistance to antibiotics. The cell wall is not a target of currently used therapeutics as Mycobacterium are considered naturally resistant to most β-lactam antibiotics. Therefore, combinations of conventional antibiotics with antibiotic activity-enhancing compounds offer a productive treatment strategy and address the widespread emergence of antibiotic-resistant strains. The first area of research was the study of a comparative analysis of disk diffusion testing and the broth dilution method for evaluating the susceptibility of M. smegmatis to antimicrobial agents. A comparative analysis of the susceptibility to antimicrobial agents alone showed that M. smegmatis was the most susceptible to ceftriaxone and kanamycin, and moderately sensitive to vancomycin and prodigiosin. Compared to the susceptibility of the antibacterial combinations, the isolate was not susceptible to antibacterial combinations with prodigiosin in disk diffusion testing. The second area of research was the study of the synergic activity of prodigiosin of S. marcescens and inhibitors of cell wall synthesis manifested by their simultaneous effect on M. smegmatis. The greatest increase in the sensitivity of test-culture of mycobacteria occurred with ampicillin, benzylpenicillin, cephazolin and ceftriaxone in combination with prodigiosin of S. marcescens. The presented combination of antibiotics and prodigiosin reduce the required concentration of the antibiotic and by amplifying the effect of compounds inhibiting cell wall synthesis, thereby giving lower FICI values. These data indicate the possibility of using prodigiosin as a promising candidate for the development of "accompaniment-preparations" for antibiotics for the additional therapy of infectious diseases caused by Mycobacterium spp. and can suspend the likelihood of developing resistance to antibiotics.

References

Alcaide, F., Esteban, J., González-Martin, J., & Palacios, J. J. (2017). Methods for determining the antimicrobial susceptibility of Mycobacteria. Enfermedades Infecciosaa in Microbiologia Clinica, 35(8), 529–535.

Amrhein, V., Korner-Nievergelt, F., & Roth, T. (2017). The earth is flat (P > 0.05): Significance thresholds and the crisis of unreplicable research. The Journal of Life and Environmental Sciences, 5, e3544.

Arthur, P. K., Amarh, V., Cramer, P., Arkaifie, G. B., Blessie, E. J. S., Fuseini, M. S., Yeboah, R., Asare, L., & Robertson, B. D. (2019). Characterization of two new multidrug-resistant strains of Mycobacterium smegmatis: Tools for routine in vitro screening of novel anti-mycobacterial agents. Antibiotics (Basel), 8(1), e4.

Baena, A., Cabarcas, F., Alvarez-Eraso, K. L. F., Isaza, J. P., Alzate, J. F., & Barrera, L. F. (2019). Differential determinants of virulence in two Mycobacterium tuberculosis Colombian clinical isolates of the LAM09 family. Virulence, 10(1), 695–710.

Bhat, Z. S., Rather, M. A., Maqbool, M., Lah, H. U., Yousuf, S. K., & Ahmad, Z. (2017). Cell wall: A versatile fountain of drug targets in Mycobacterium tuberculosis. Biomedicine and Pharmacotherapy, 95, 1520–1534.

Catalão, M. J., Filipe, S. R., & Pimentel, M. (2019). Revisiting anti-tuberculosis therapeutic strategies that target the peptidoglycan structure and synthesis. Frontiers in Microbiology, 10, 190.

Chenqiang, L., Xianbo, J., Yu, F., Longjun, C., Hui, Z., Rongbin, L., & Jichen, C. (2019). Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electronic Journal of Biotechnology, 40, 58–64.

Cohen, K. A, Bishai, W. R., & Pym, A. S. (2014). Molecular basis of drug resistance in Mycobacterium tuberculosis. Microbiology Spectrum, 2(3), e0036.

Colquhoun, D. (2017). The reproducibility of research and the misinterpretation of p-values. Royal Society Open Science, 4(12), 171085.

Cowman, S., Burns, K., Benson, S., Wilson, R., & Loebinger, M. (2015). The anti­microbial susceptibility of non-tuberculous mycobacteria. Journal of Infection, 72(3), 324–331.

Danevčič, T., Vezjak, M. B., Zorec, M., & Stopar, D. (2016). Prodigiosin – а multifaceted Escherichia coli antimicrobial agent. Public Library of Science One, 11(9), e0162412.

Darshan, N., & Manonmani, H. K. (2015). Prodigiosin and its potential applications. The Journal of Food Science and Technology, 52(9), 5393–5407.

Diacon, A. H., van der Merwe, L., Barnard, M., von Groote-Bidlingmaier, F., Lange, C., García-Basteiro, A. L., Sevene, E., Ballell, L., & Barros-Aguirre, D. (2016). β-lactams against tuberculosis – new trick for an old dog? The New England Journal of Medicine, 375(4), 393–394.

Dozie-Nwachukwu, S. O., Danyuo, Y., Obayemi, J. D., Odusanya, O. S., Malatesta, K., & Soboyejo, W. O. (2017). Extraction and encapsulation of prodigiosin in chitosan microspheres for targeted drug delivery. Materials Science and Engineering: Materials for Biological Applications, 71, 268–278.

Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373.

Hameed, H. M. A., Islam, M. M., Chhotaray, C., Wang, C., Liu, Y., Tan, Y., Li, X., Tan, S., Delorme, V., Yew, W. W., Liu J., & Zhang, T. (2018). Molecular targets related drug resistance mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis strains. Frontiers in Cellular and Infection Mic­robiology, 8, 114.

Hiroyuki, Y., Kinuyo, C., Akio, A., Yuriko, I., Yi, L., Akiko, T., & Satoshi, M. (2016). Can M. smegmatis be used as a real alternative for M. tuberculosis? European Respiratory Journal, 48, 60.

Hussan, H. T., & Authaman, S. H. (2015). Antimicrobial and antiadhesive properties of prodigiosin extracted from Serratia marcescens against bacteria isolated from patients with leukemia. World Journal of Pharmaceutical Research, 4(12), 136–153.

Kimyon, Ö., Das, T., Ibugo, A. I., Kutty, S. K., Ho, K. K., Tebben, J., Kumar, N., & Manefield, M. (2016). Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules. Frontiers in Microbiology, 7, 972.

Li, D., Liu, J., Wang, X., Kong, D., Du, W., Li, H., Hse, C. Y., Shupe, T., & Zhou, D., Zhao, K. (2018). Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines. International Journal of Molecular Sciences, 19(11), e3465.

Malhotra, S., Vedithi, S. C., & Blundell, T. L. (2017). Decoding the similarities and differences among mycobacterial species. PLOS Neglected Tropical Deseases, 11(8), e0005883.

McShane, P. J., & Glassroth, J. (2015). Pulmonary disease due to non-tuberculous mycobacteria: Current state and new insights. Diseases of the Chest, 148(6), 1517–1527.

Millard, J., Ugarte-Gil, C., & Moore, D. A. (2015). Multidrug resistant tuberculosis. British Medical Journal, 350, h882.

Mulani, M., Kamble, E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539.

Nasiri, M. J., Haeili, M., Ghazi, M., Goudarzi, H., Pormohammad, A., Fooladi, A. A., & Feizabadi, M. M. (2017). New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Frontiers in Microbiology, 8, 681.

Nuzzo, R. (2014). Scientific method: Statistical errors. Nature, 506(7487), 150–152.

Pai, M., Nicol, M. P., & Boehme, C. C. (2016). Tuberculosis diagnostics: State of the art and future directions. Microbiol Spectrum, 4(5), e0019.

Phatake, Y. B., & Dharmadhikari, S. M. (2016). Isolation and screening of prodigiosin production bacteria and characterization of produced pigment. International Journal of Security and Networks, 7(1), 202–209.

Phillips, D. J., Harrison, J., Richards, S. J., Mitchell, D. E., Tichauer, E., Hubbard, A. T. M., Guy, C., Hands-Portman, I., Fullam, E., & Gibson, M. I. (2017). Evaluation of the antimicrobial activity of cationic polymers against Mycobacteria: Toward antitubercular macromolecules. Biomacromolecules, 18(5), 1592–1599.

Pizzolato-Cezar, L., Okuda-Shinagawa, N., & Machini, M. (2019). Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Frontiers in Microbiology, 10, 1703.

Pore, T. S., Ashwini, B. K., & Naiem, H. N. (2016). Production, purification, identification of prodigiosin from Serratia sp. and its antimicrobial activity. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 1(6), 325.

Shahraki, A. H., Heidarieh, P., Bostanabad, S. Z., Khosravi, A. D., Hashemzadeh, M., Khandan, S., Biranvand, M., Schraufnagel, D. E., & Mirsaeidi, M. (2015). “Multidrug-resistant tuberculosis” may be non-tuberculous mycobacteria. Euro­pean Journal of Internal Medicine, 26(4), 279–284.

Shleeva, M. O., Trutneva, K. A., Demina, G. R., Zinin, A. I., Sorokoumova, G. M., Laptinskaya, P. K., Shumkova, E. S., & Kaprelyants, A. S. (2017). Free trehalose accumulation in dormant Mycobacterium smegmatis cells and its breakdown in early resuscitation phase. Frontiers in Microbiology, 8, 524.

Singh, V., Bala, M., Bhargava, A., Kakran, M., & Bhatnagar, R. (2018). In vitro efficacy of 21 dual antimicrobial combinations comprising novel and currently recommended combinations for treatment of drug resistant gonorrhoea in future era. PLoS One, 13(3), e0193678.

Srimathi, R., Priya, R., Nirmala, M., & Malarvizhi, A. (2017). Isolation, identificati­on, optimization of prodigiosin pigment produced by Serratia marcescens. Inter­national Journal of Latest Engineering and Management Research, 2(9), 11–21.

Stankovic, N., Senerovic, L., Ilic-Tomic, T., Vasiljevic, B., & Nikodinovic-Runic, J. (2014). Properties and applications of undecylprodigiosin, and other bacterial prodigiosins. Applied Microbiology and Biotechnology, 98, 3841–3858.

Trutneva, K., Shleeva, M., Nikitushkin, V., Demina, G., & Kaprelyants, A. (2018). Protein composition of Mycobacterium smegmatis differs significantly between active cells and dormant cells with ovoid morphology. Frontiers in Microbiology, 9, 2083.

Wayne, P. A. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Clinical and Laboratory Standards Institute, Pennsylvania, USA.

Wayne, P. A. (2017). Performance standards for antimicrobial susceptibility testsing. Clinical and Laboratory Standards Institute, Pennsylvania, USA.

Wayne, P. A. (2018). Laboratory detection and identification of Mycobacteria. Clinical and Laboratory Standards Institute, Pennsylvania.

Wu, M. L., Chan, C. L., & Dick, T. (2016). Rel is required for morphogenesis of resting cells in Mycobacterium smegmatis. Frontiers in Microbiology, 7, 1390.

Wu, M. L., Gengenbacher, M., & Dick, T. (2016). Mild nutrient starvation triggers the development of a small-cell survival morphotype in Mycobacteria. Frontiers in Microbiology, 7, 947.

Wu, U.-I., & Holland, S. M. (2015). Host susceptibility to non-tuberculous mycobacterial infections. The Lancet Infectious Diseases, 15(8), 968–980.

Xu, X., Xu, L., Yuan, G., Wang, Y., Qu, Y., & Zhou, M. (2018). Synergistic com­bination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Scientific Reports, 8, 7237.

Published
2020-02-03
How to Cite
Ivanchenko, D. A., & Hrytsenko, L. M. (2020). In vitro synergy testing of prodigiosin in combination with inhibitors of cell wall synthesis against Mycobacterium smegmatis . Regulatory Mechanisms in Biosystems, 11(1), 127-132. https://doi.org/10.15421/022019