In vitro effects of platelet-derived factors of brain glioma patients on C6 glioma cells

  • L. D. Liubich State Institution “Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine”
  • N. I. Lisyanyi State Institution “Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine”
  • T. A. Malysheva State Institution “Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine”
  • L. P. Staino State Institution “Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine”
  • D. M. Egorova State Institution “Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine”
  • V. V. Vaslovych State Institution “Romodanov Neurosurgery Institute, National Academy of Medical Sciences of Ukraine”
Keywords: thrombocytes; released secretion products; conditioned medium; tumour cells; mitotic index; cell clusters.

Abstract

Platelets play an important part in the progression and pathological angiogenesis of brain glioma because of the different granules content and release of microvesicles that are the source of numerous mediators and bioactive substances, which probably provides a "strategy" for the tumour survival. The objective of study was exploring the effect of platelet-released secretion products of patients with brain glioma on the experimental model of tumour growth in vitro. For this purpose, the cells of glioma C6 were cultured for 72 hours under the addition of modified media containing platelet-released secretion products or conditioned media of peripheral blood cells of patients with glioma as well as persons of the comparison group without rough somatic pathology. In control glioma C6 cultures in standard conditions cell clusters were formed by the type of "spheroids", from which radial cell migration occurred, a tense cellular or reticular growth zone was formed, and tumour cells preserved their ability to mitotic division. Under the influence of platelet-released secretion products of patients with glioma, differently directed effects on cell mitotic activity and the number of cell clusters in glioma C6 cultures were detected depending on the degree of tumour malignancy: stimulating effect under the influence of platelet factors of patients with high-malignancy glioma (G4) and inhibitory effect – due to the influence of platelet factors of patients with differentiated glioma (G2). In contrast to the thrombocyte-released factors, the conditioned media of a common pool of peripheral blood cells of patients with G4 glioma suppressed the mitotic activity of tumour cells and did not affect the number of cell clusters. No changes in glioma C6 cultures were revealed after the influence of platelet-released secretion products of persons of the comparison group. The obtained data confirm the important role of platelets in the pathogenesis of brain glioma, pointing to the fundamental difference in the spectrum of biologically active molecules that are released by platelets of patients depending on the degree of tumour malignancy and are able to regulate the cell cycle and proliferative activity of the glioma tumour cells, which may have application as a diagnostic marker as well as predictive marker of response to antitumour therapy.

References

Amodeo, V., Betts, J., Bartesaghi, S., Zhang, Y., Richard-Londt, A., Ellis, M., Roshani, R., Vouri, M., Galavotti, S., Oberndorfer, S., Leite, A. P., Mackay, A., Lampada, A., Stratford, E. W., Li, N., Dinsdale, D., Grimwade, D., Jones, C., Nicotera, P., Michod, D., Brandner, S., & Salomoni, P. (2017). A PML/Slit axis controls physiological cell migration and cancer invasion in the CNS. Cell Reports, 20(2), 411–426.

Bao, B., Ali, S., Ahmad, A., Li, Y., Banerjee, S., Kong, D., Aboukameel, A., Mohammad, R., Van Buren, E., Azmi, A. S., & Sarkar, F. H. (2014). Differentially expressed miRNAs in cancer-stem-like cells: markers for tumor cell aggressiveness of pancreatic cancer. Stem Cells and Development, 23(16), 1947–1958.

Bao, Y., Yang, M., Jin, C., Hou, S., Shi, B., Shi, J., & Lin, N. (2018). Preoperative hematologic inflammatory markers as prognostic factors in patients with glioma. World Neurosurgery, 119, e710–e716.

Best, M. G., Wesseling, P., & Wurdinger, T. (2018). Tumor-educated platelets as a noninvasive biomarker source for cancer detection and progression monitoring. Cancer Research, 78(13), 3407–3412.

Cervi, D., Yip, T., Bhattacharya, N., Podust, V. N., Peterson, J., Abou-Slaybi, A., Naumov, G. N., Bender, E., Almog, N., Italiano, J. E., Folkman, J., & Klement, G. L. (2008). Platelet-associated PF-4 as a biomarker of early tumor growth. Blood, 111(3), 1201–1207.

Chambers, A. M., Lupo, K. B., & Matosevic, S. (2018). Tumor microenvironment-induced immunometabolic reprogramming of natural killer cells. Frontiers in Immunology, 9, 2517.

Cole, B. J., Seroyer, S. T., Filardo, G., Bajaj, S., & Fortier, L. A. (2010). Platelet-rich plasma: Where are we now and where are we going? Sports Health, 2(3), 203–210.

Di Vito, C., Navone, S. E., Marfia, G., Abdel Hadi, L., Mancuso, M. E., Pecci, A., Crisà, F. M., Berno, V., Rampini, P., Campanella, R., & Riboni, L. (2016). Platelets from glioblastoma patients promote angiogenesis of tumor endothelial cells and exhibit increased VEGF content and release. Platelets, 29, 1–10.

Dubrovska, A. M., & Souchelnytskyi, S. S. (2014). Low-density microarray analysis of TGF-1-dependent cell cycle regulation in human breast adenocarcinoma MCG7 cell line. Biopolymers and Cell, 30(2), 107–117.

Fedorenko, Z. P., Michailovich, Y. Y., Goulak, L. O., Gorokh, Y. L., Ryzhov, A. Y., Soumkina, O. V., & Koutsenko, L. B. (2019). Cancer in Ukraine, 2017–2018. Incidence, mortality, activities of oncological service. Bulletin of National Cancer Registry of Ukraine, 20, 56–57.

Frei, K., Gramatzki, D., Tritschler, I., Schroeder, J. J., Espinoza, L., Rushing, E. J., & Weller, M. (2015). Transforming growth factor-β pathway activity in glioblastoma. Oncotarget, 6(8), 5963–5977.

Frimel, G. (Ed.). (1987). Immunologicheskie metody [Immunological methods]. Medicina, Moscow (in Russian).

Gaertner, F., & Massberg, S. (2016). Blood coagulation in immunothrombosis – at the frontline of intravascular immunity. Seminars in Immunology, 28(6), 561–569.

Garcia, I., Aldaregia, J., Marjanovic Vicentic, J., Aldaz, P., Moreno-Cugnon, L., Torres-Bayona, S., Carrasco-Garcia, E., Garros-Regulez, L., Egaña, L., Rubio, A., Pollard, S., Stevanovic, M., Sampron, N., & Matheu, A. (2017). Oncogenic activity of SOX1 in glioblastoma. Scientific Reports, 7, 46575.

Gunther, H. S., Schmidt, N. O., Phillips, H. S., Kemming, D., Kharbanda, S., Soriano, R., Modrusan, Z., Meissner, H., Westphal, M., & Lamszus, K. (2008). Glioblastoma-derived stem cell-enriched cultures form distinct subgroups according to molecular and phenotypic criteria. Oncogene, 27, 2897–2909.

Gutova, M., Flores, L., Adhikarla, V., Tsaturyan, L., Tirughana, R., Aramburo, S., Metz, M., Gonzaga, J., Annala, A., Synold, T. W., Portnow, J., Rockne, R. C., & Aboody, K. S. (2019). Quantitative evaluation of intraventricular delivery of therapeutic neural stem cells to orthotopic glioma. Frontiers in Oncology, 9, 68.

Haemmerle, M., Taylor, M. L., Gutschner, T., Pradeep, S., Cho, M. S., Sheng, J., Lyons, Y. M., Nagaraja, A. S., Dood, R. L., Wen, Y., Mangala, L. S., Hansen, J. M., Rupaimoole, R., Gharpure, K. M., Rodriguez-Aguayo, C., Yim, S. Y., Lee, J.-S., Ivan, C., Hu, W., Lopez-Berestein, G., Wong, S. T., Karlan, B. Y., Levine, D. A., Liu, J., Afshar-Kharghan, V., & Sood, A. K. (2017). Platelets reduce anoikis and promote metastasis by activating YAP1 signaling. Nature Communications, 8, 310.

Hampton, T. (2018). Platelets’ role in adaptive immunity may contribute to sepsis and shock. Journal of the American Medical Association, 319(13), 1311–1312.

Huong, P. T., Nguyen, L. T., Nguyen, X. B., Lee, S. K., & Bach, D. H. (2019). The role of platelets in the tumor-microenvironment and the drug resistance of cancer cells. Cancers (Basel), 11(2), e240.

Jiang, X., Wong, K. H. K., Khankhel, A. H., Zeinali, M., Reategui, E., Phillips, M. J., Luo, X., Aceto, N., Fachin, F., Hoang, A. N., Kim, W., Jensen, A. E., Sequist, L. V., Maheswaran, S., Haber, D. A., Stott, S. L., & Toner, M. (2017). Microfluidic isolation of platelet-covered circulating tumor cells. Lab on a Chip, 17, 3498–3453.

Kaminska, B., Kocyk, M., & Kijewska, M. (2013). TGF beta signaling and its role in glioma pathogenesis. Advances in Experimental Medicine and Biology, 986, 171–187.

Kaya, V., Yildirim, M., Yazici, G., Yalçin, A. Y., Orhan, N., & Güzel, A. (2017). Prognostic signifiance of indicators of systemic inflammatory responses in glioblastoma patients. Asian Pacific Journal of Cancer Prevention, 18(12), 3287–3291.

Klement, G. L., Yip, T. T., Cassiola, F., Kikuchi, L., Cervi, D., Podust, V., Italiano, J. E., Wheatley, E., Abou-Slaybi, A., Bender, E., Almog, N., Kieran, M. W., & Folkman, J. (2009). Platelets actively sequester angiogenesis regulators. Blood, 113(12), 2835–2842.

Klingemann, H., Boissel, L., & Toneguzzo, F. (2016). Natural killer cells for immunotherapy – advantages of the NK-92 cell line over blood NK cells. Frontiers in Immunology, 7, 91.

Kool, M., Korshunov, A., Remke, M., Jones, D. T. W., Schlanstein, M., Northcott, P. A., Cho, Y.-J., Koster, J., Schouten-van Meeteren, A., van Vuurden, D., Clifford, S. C., Pietsch, T., von Bueren, A. O., Rutkowski, S., McCabe, M., Collins, V. P., Bäcklund, M. L., Haberler, C., Bourdeaut, F., Delattre, O., Doz, F., Ellison, D. W., Gilbertson, R. J., Pomeroy, S. L., Taylor, M. D., Lichter, P., & Pfister, S. M. (2012). Molecular subgroups of medulloblastoma: An international meta-analysis of transcriptome, genetic aberrations, and clinical data of WNT, SHH, Group 3, and Group 4 medulloblastomas. Acta Neuropathologica, 123, 473–484.

Kraevskij, N. I., Kazanceva, I. A., Ol'hovskaja, I. G., & Probatova, N. A. (1984). Issledovanie patologii mitoza v klinicheskoj onkomorfologii [The study of the pathology of mitosis in clinical oncomorphology]. Arhiv Patologii, 11, 16–22.

Kusne, Y., & Sanai, N. (2015). The SVZ and its relationship to stem cell based neuro-oncogenesis. Advances in Experimental Medicine and Biology, 853, 23–32.

Labelle, M., Begum, S., & Hynes, R. O. (2011). Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell, 20, 576–590.

Labelle, M., Begum, S., & Hynes, R. O. (2014). Platelets guide the formation of early metastatic niches. Proceedings of the National Academy of Sciences of the United States of America, 111, e3053–e3061.

Laks, D. R., Masterman-Smith, M., Visnyei, K., Angenieux, B., Orozco, N. M., Foran, I., Yong, W. H., Vinters, H. V., Liau, L. M., Lazareff, J. A., Mischel, P. S., Cloughesy, T. F., Horvath, S., & Kornblum, H. I. (2009). Neurosphere formation is an independent predictor of clinical outcome in malignant glioma. Stem Cells, 27, 980–987.

Lana, J. F. S. D., Purita, J., Paulus, C., Huber, S. C., Rodrigues, B. L., Rodrigues, A. A., Santana, M. H., Madureira, J. L. Jr., Malheiros Luzo, Â. C., Belangero, W. D., & Annichino-Bizzacchi, J. M. (2017). Contributions for classification of platelet rich plasma – proposal of a new classification: Marspill. Regenerative Medicine, 12(5), 565–574.

Ledur, P. F., Liu, C., He, H., Harris, A. R., Minussi, D. C., Zhou, H. Y., Shaffrey, M. E., Asthagiri, A., Lopes, M. B., Schiff, D., Lu, Y. C., Mandell, J. W., Lenz, G., & Zong, H. (2016). Culture conditions tailored to the cell of origin are critical for maintaining native properties and tumorigenicity of glioma cells. Neuro-Oncology, 18(10), 1413–1424.

Li, M., Sun, S., Dangelmajer, S., Zhang, Q., Wang, J., Hu, F., Dong, F., Kahlert, U. D., Zhu, M., & Lei, T. (2019). Exploiting tumor-intrinsic signals to induce mesenchymal stem cell-mediated suicide gene therapy to fight malignant glioma. Stem Cell Research and Therapy, 10(1), 88.

Loo, H. K., Mathen, P., Lee, J., & Camphausen, K. (2019). Circulating biomarkers for high-grade glioma. Biomarkers in Medicine, 3(3), 161–165.

Lopes, M., Carvalho, B., Vaz, R., & Linhares, P. (2018). Influence of neutrophil-lymphocyte ratio in prognosis of glioblastoma multiforme. Journal of Neuro-Oncology, 136(1), 173–180.

Louis, D. N., Ohgaki, H., Wiestler, O. D., & Cavenee, W. K. (2016). WHO classification of tumours of the central nervous system. WHO Classification of Tumours. 4th edition, IARC.

Machlus, K. R., Thon, J. N., & Italiano, J. E. (2014). Interpreting the developmental dance of the megakaryocyte: A review of the cellular and molecular processes mediating platelet formation. British Journal of Haematology, 165(2), 227–236.

Matosevic, S. (2018). Viral and nonviral engineering of natural killer cells as emerging adoptive cancer immunotherapies. Journal of Immunology Research, 2018, 4054815.

McAllister, S. S., & Weinberg, R. A. (2014). The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 16, 717–727.

Mehta, S., & Lo Cascio, C. (2018). Developmentally regulated signaling pathways in glioma invasion. Cellular and Molecular Life Sciences, 75(3), 385–402.

Michelson, A. D. (Ed.). (2013). Platelets. 3rd ed. Academic Press, Oxford.

Mints, M., & Souchelnytskyi, S. (2014). Impact of combinations of EGF, TGF, 17-oestradiol, and inhibitors of corresponding pathways on prolipheration of breast cancer cell lines. Experimental Oncology, 36(2), 67–71.

Mooney, R., Hammad, M., Batalla-Covello, J., Abdul Majid, A., & Aboody, K. S. (2018). Concise review: Neural stem cell-mediated targeted cancer therapies. Stem Cells Translational Medicine, 7(10), 740–747.

Nakano, I. (2015). Stem cell signature in glioblastoma: Therapeutic development for a moving target. Journal of Neurosurgery, 122(2), 324–330.

Nilsson, R. J., Balaj, L., Hulleman, E., van Rijn, S., Pegtel, D. M., Walraven, M., Widmark, A., Gerritsen, W. R., Verheul, H. M., Vandertop, W. P., Noske, D. P., Skog, J., & Wurdinger, T. (2011). Blood platelets contain tumor-derived RNA biomarkers. Blood, 118(13), 3680–3683.

Okawa, S., Gagrica, S., Blin, C., Ender, C., Pollard, S. M., & Krijgsveld, J. (2017). Proteome and secretome characterization of glioblastoma-derived neural stem cells. Stem Cells, 35(4), 967–980.

Panek, W. K., Pituch, K. C., Miska, J., Kim, J. W., Rashidi, A., Kanojia, D., Lopez-Rosas, A., Han, Y., Yu, D., Chang, C. L., Kane, J. R., Zhang, P., Cordero, A., & Lesniak, M. S. (2018). Local application of autologous platelet-rich fibrin patch (PRF-P) suppresses regulatory T cell recruitment in a murine glioma model. Molecular Neurobiology, 2018, 1–9.

Panosyan, E. H., Laks, D. R., Masterman-Smith, M., Mottahedeh, J., Yong, W. H., Cloughesy, T. F., Lazareff, J. A., Mischel, P. S., Moore, T. B., & Kornblum, H. I. (2010). Clinical outcome in pediatric glial and embryonal brain tumors correlates with in vitro multi-passageable neurosphere formation. Pediatric Blood and Cancer, 55, 644–651.

Persson, A. I., Petritsch, C., Swartling, F. J., Itsara, M., Sim, F. J., Auvergne, R., Goldenberg, D. D., Vandenberg, S. R., Nguyen, K. N., Yakovenko, S., Ayers-Ringler, J., Nishiyama, A., Stallcup, W. B., Berger, M. S., Bergers, G., McKnight, T. R., Goldman, S. A., & Weiss, W. A. (2010). Non-stem cell origin for oligodendroglioma. Cancer Cell, 18(6), 669–682.

Poggi, A., & Giuliani, M. (2016). Mesenchymal stromal cells can regulate the immune response in the tumor microenvironment. Vaccines, 4, 41.

Pollard, S. M., Yoshikawa, K., Clarke, I. D., Danovi, D., Stricker, S., Russell, R., Bayani, J., Head, R., Lee, M., Bernstein, M., Squire, J. A., Smith, A., & Dirks, P. (2009). Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens. Cell Stem Cell, 4(6), 568–580.

Portnow, J., Synold, T. W., Badie, B., Tirughana, R., Lacey, S. F., D'Apuzzo, M., Metz, M. Z., Najbauer, J., Bedell, V., Vo, T., Gutova, M., Frankel, P., Chen, M., & Aboody, K. S. (2017). Neural stem cell-based anticancer gene therapy: A first-in-human study in recurrent high-grade glioma patients. Clinical Cancer Research, 23(12), 2951–2960.

Pucci, F., Rickelt, S., Newton, A. P., Garris, C., Nunes, E., Evavold, C., Pfirschke, C., Engblom, C., Mino-Kenudson, M., Hynes, R. O., Weissleder, R., & Pittet, M. J. (2016). PF4 promotes platelet production and lung cancer growth. Cell Reports, 17(7), 1764–1772.

Qin, E. Y., Cooper, D. D., Abbott, K. L., Lennon, J., Nagaraja, S., Mackay, A., Jones, C., Vogel, H., Jackson, P. K., & Monje, M. (2017). Neural precursor-derived pleiotrophin mediates subventricular zone invasion by glioma. Cell, 170(5), 845–859.

Rahman, M., Reyner, K., Deleyrolle, L., Millette, S., Azari, H., Day, B. W., Stringer, B. W., Boyd, A. W., Johns, T. G., Blot, V., Duggal, R., & Reynolds, B. A. (2015). Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anatomy and Cell Biology, 48(1), 25–35.

Saito, T., Sugiyama, K., Hama, S., Yamasaki, F., Takayasu, T., Nosaka, R., Muragaki, Y., Kawamata, T., & Kurisu, K. (2018). Prognostic importance of temozolomide-induced neutropenia in glioblastoma, IDH-wildtype patients. Neurosurgical Review, 41(2), 621–628.

Schraen-Maschke, S., & Zanetta, J. P. (2003). Role of oligomannozidic N-glycans in the proliferation, adhesion of C6 glioblastoma cells and signaling. Biochimie, 85(1–2), 219–229.

Sharda, A., & Flaumenhaft, R. (2018). The life cycle of platelet granules. F1000Research, 7, 236.

Song, W. S., Yang, Y. P., Huang, C. S., Lu, K. H., Liu, W. H., Wu, W. W, Lee, Y. Y., Lo, W. L., Lee, S. D., Chen, Y. W., Huang, P. I., & Chen, M. T. (2016). Sox2, a stemness gene, regulates tumor-initiating and drug-resistant properties in CD133-positive glioblastoma stem cells. Journal of the Chinese Medical Association, 79(10), 538–545.

Stangeland, B., Mughal, A. A., Grieg, Z., Sandberg, C. J., Joel, M., Nygård, S., Meling, T., Murrell, W., Vik Mo, E. O., & Langmoen, I. A. (2015). Combined expressional analysis, bioinformatics and targeted proteomics identify new potential therapeutic targets in glioblastoma stem cells. Oncotarget, 6(28), 26192–26215.

Steinbeck, R. G. (2001). Pathologic mitoses and pathology of mitosis in tumorigenesis. European Journal of Histochemistry, 45, 311–318.

Stellos, K., Kopf, S., Paul, A., Marquardt, J. U., Gawaz, M., Huard, J., & Langer, H. F. (2010). Platelets in regeneration. Seminars in Thrombosis and Hemostasis, 36, 175–184.

Sundman, E. A., Cole, B. J., & Fortier, L. A. (2011). Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. American Journal of Sports Medicine, 39(10), 2135–2140.

van Linde, M. E., van der Mijn, J. C., Pham, T. V., Knol, J. C., Wedekind, L. E., Hovinga, K. E., Aliaga, E. S., Buter, J., Jimenez, C. R., Reijneveld, J. C., & Verheul, H. M. (2016). Evaluation of potential circulating biomarkers for prediction of response to chemoradiation in patients with glioblastoma. Journal of Neuro-Oncology, 129(2), 221–230.

Veluchamy J. P., Kok, N., van der Vliet, H. J., Verheul, H. M. W., de Gruijl, T. D., & Spanholtz, J. (2017). The rise of allogeneic natural killer cells as a platform for cancer immunotherapy: recent innovations and future developments. Frontiers in Immunology, 8, 631.

Wang, X., Ren, H., Zhao T., Chen, J., Sun, W., Sun, Y., Ma, W., Wang, J., Gao, C., Gao, S., Lang, M., Jia, L., & Hao, J. (2014). Stem cell factor is a novel independent prognostic biomarker for hepatocellular carcinoma after curative resection. Carcinogenesis, 35(10), 2283–2290.

Wurdinger, T., Deumelandt, K., van der Vliet, H. J., Wesseling, P., & de Gruijl, T. D. (2014). Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: how to break a vicious cycle. Biochimica et Biophysica Acta, 1846(2), 560–575.

Yamamuro, S., Okamoto, Y., Sano, E., Ochiai, Y., Ogino, A. Ohta, T., Hara, H., Ueda, T., Nakayama, T., Yoshino, A., & Katayama, Y. (2015). Characterization of glioma stem-like cells from human glioblastomas. International Journal of Oncology, 47(1), 91–96.

Zhang, J., Yang, W., Zhao, D., Han, Y., Liu, B., Zhao, H., Wang, H., Zhang, Q., & Xu, G. (2013). Correlation between TSP-1, TGF-β and PPAR-γ expression levels and glioma microvascular density. Oncology Letters, 7(1), 95–100.

Zheng, Y., Yamamoto, S., Ishii, Y., Sang, Y., Hamashima, T., Van De, N., Nishizono, H., Inoue, R., Mori, H., & Sasahara, M. (2016). Glioma-derived platelet-derived growth factor-BB recruits oligodendrocyte progenitor cells via platelet-derived growth factor receptor-α and remodels cancer stroma. The American Journal of Pathology, 186(5), 1081–1091.

Zong, H., Parada, L. F., & Baker, S. J. (2015). Cell of origin for malignant gliomas and its implication in therapeutic development. Cold Spring Harbor Perspectives in Biology, 7(5), a020610.

Published
2019-04-25
How to Cite
Liubich, L. D., Lisyanyi, N. I., Malysheva, T. A., Staino, L. P., Egorova, D. M., & Vaslovych, V. V. (2019). In vitro effects of platelet-derived factors of brain glioma patients on C6 glioma cells . Regulatory Mechanisms in Biosystems, 10(2), 187-196. https://doi.org/10.15421/021928