Influence of potassium p-aminobenzene thiosulfate on the membrane potential and ATPase activity of the plasmatic membrane of the embryos of weatherfish (Misgurnus fossіlis)

  • О. Yaremkevych Lviv Polytechnic National University
  • V. Lubenets Lviv Polytechnic National University
Keywords: potassium p-aminobenzene thiosulfonate; transmembrane potential; weatherfish embryos; ultrastructure.


We studied the effects of the newly synthesized biologically active compound potassium aminobenzene thiosulfonate on electrophysiological parameters of the embryos of weatherfish (Misgurnus fossіlis L.), in particular the dynamics of transmembrane potential (TMP) of the plasmatic membranes of the weatherfish and the activity of the membrane enzyme Na+/K+–ATPase during synchronous cleavage of blastomeres in early embryogenesis. A slight impairment of electrogenesis of the cellular membranes under the action of potassium aminobenzene thiosulfonate indicates changes in the permeability of plasmatic membrane and transport of electrogenic ions. This was related to the inhibition of biosynthetic processes in the first hours of the development of embryos, which led to 60.6 ± 2.6% decrease in the activity of membrane pump when subject to high (10–3 М) concentration of potassium aminobenzene thiosulfonate. Its activity further recovered to the level of the control only in 10–8 М concentration. Also, we conducted a comparative analysis of the effects potassium aminobenzenethiosulfonate had on the activity of the membrane pump of embryos in in vivo and in vitro experiments. We determined that the action of the examined compound depends on the presence of a correspondding concentration in the embryo incubation medium. To characterize the variability of changes in the activity of membrane pump of the embryos in the conditions of action of potassium aminobenzene thiosulfonate, we determined constants of semi-inhibition (І50) by linearization of the developed concentration-effect curves using Hill’s plot. To determine which factors contribute to the changes in the activity of membrane pump the most, namely, various concentrations of potassium p-aminobenzene thiosulfonate, duration of the development of embryos or other factors that had not been taken into account, we performed a dispersion analysis of how these factors affect the variability of the studied parameter. We determined that the extent of variability of the activity of the membrane pump is also determined by the effect of different concentrations of potassium p-aminobenzene thiosulfonate, and the factor of time of embryo development. The electronic-microscopic study of weatherfish’s blastomeres subject to potassium p-aminobenzene thiosulfonate revealed the changes in the ultrastructure of mitochondria, which led to inhibition of their matrix and electron transport chain, and therefore decrease the efficiency of ATP production and energy-dependent processes.


Bakhrushyn, V. I. (2011). Metody analizu danykh [Data analysis methods]. Kyiv Polytechnic University, Zaporizhzhia (in Ukrainian).

Block, E. (1985). The chemistry of garlic and onions. Scientific American, 252, 114–119.

Borlinghaus, J., Foerster, J., Kappler, U., Antelmann, H., Noll, U., Gruhlke, M. C. H., & Slusarenko, A. J. (2021). Allicin, the odor of freshly crushed garlic: A review of recent progress in understanding allicin’s effects on cells. Molecules, 26(6), 1505.

Briston, T., Roberts, M., Lewis, S., Powney, B., Staddon, J. M., Szabadkai, G., & Duchen, M. R. (2017). Mitochondrial permeability transition pore: Sensitivity to opening and mechanistic dependence on substrate availability. Scientific Reports, 7(1), 10492.

Crowley, M., & Dando, M. R. (2022). Toxin and bioregulator weapons. Springer Nature, Essex.

Dotsenko, О. І., & Taradina, H. V. (2017). Biofizyka. Fermentatyvna kinetyka. Dynamichni modeli biolohichnykh protsesiv [Biophysics. Enzymatic kinetics. Dinamic models of biological processes]. Donetsk National University named after Vasyl Stus, Vinnitsa (in Ukrainian).

Filimonov, D. (1999). Chemical similarity assessment through multilevel neighborhoods of atoms: Definition and comparison with the descriptors. Journal of Cyemical Information and Computer Sciences, 39(4), 666–670.

Field, L., Aldo, F., Crenshaw, R., & Owen, C. (1964). Organic disulfides and related substances. Symmetrical aminothiolsulfinates as antiradiation drugs. Journal of Medicinal Chemistry, 39(7), 39–44.

Fiske, C. H., & Subbarow, Y. J. (1925). The colorimetric determination of phosphorus. Biological Chemistry, 66, 375–400.

Freeman, F., & Kodera, Y. (1995). Garlic chemistry: Stability of S (2 propyl) 2 propen 1 sulfinothioate (allicin) in blood, solvents, and stimulated physiological fluids. Journal of Agricultural and Food Chemistry, 43, 2332–2338.

Fuchs, A. L., Weaver Jr., A. J., Tripet, B. P., Ammons, M. C. B., Teintze, M., & Copié, V. (2018). Characterization of the antibacterial activity of bald’s eyesalve against drug resistant Staphylococcus aureus and Pseudomonas aeruginosa. PLoS One, 13, e0208108.

Hanson, P. I., & Cashikar, A. (2012). Multivesicular body morphogenesis. Annual Review of Cell and Developmental Biology, 28, 337–362.

Høiby, N. (2017). A short history of microbial biofilms and biofilm infections. APMIS, 125, 272–275.

Hoida, O. A. (1993). Biofizicheskie aspekty rannego ontogeneza zhivotnykh [Biophysical aspects of early animal ontogeny]. Naukova Dumka, Kyiv (in Russian).

Hirsch, J. (2009). Allicin up-regulates cellular glutathione level in vascular endothelial cells. European Journal of Nutrition, 48(2), 67–74.

Iciek, M. (2009). Biological properties of garlic and garlic-derived organosulfur compounds. Environmental and Molecular Mutagenesis, 50(3), 247–265.

Gafurov, R. G., & Makhmutova, A. A. (2005). Growth-regulating activity of N-benzyl- and O-benzyl-containing compounds belonging to a new group of synthetic analogues of natural auxins. Applied Biochemistry and Microbiology, 41, 213–218.

Galyk, G. V., Fedorovych, Z. Y., Lychkovsky, E. I., & Vorobets, Z. D. (2021). Mathematical model of transmembrane potential dynamics of loach early embryogenesis. Regulatory Mechanisms in Biosystems, 12(1), 58–64.

Getti, G. T. M., & Poole, P. L. (2019). Allicin causes fragmentation of the peptideglycan coat in Staphylococcus aureus by effecting synthesis and aiding hydrolysis: A determination by MALDI TOF mass spectrometry on whole cells. Journal of Medical Microbiology, 68, 667–677.

Kadir, L. A., Stacey, M., & Barrett-Jolley, R. (2018). Emerging roles of the membrane potential: Action beyond the action potential. Frontiers in Physiology, 9, 1661.

Lawson, L. D., & Wang, Z. J. (1993). Pre hepatic fate of the organosulfur compounds derived from garlic (Allim sativum). Planta Medica, 59(7), 688–689.

Lihua, L., Jianhuit, W., Jialini, Y., Yayin, L., & Guanxin, L. (2013). Effects of allicin on the formation of Pseudomonas aeruginosa biofinm and the production of quorum-sensing controlled virulence factors. Polish Journal of Microbiology, 62, 243–251.

Loi, V. V., Huyen, N. T. T., Busche, T., Tung, Q. N., Gruhlke, M. C. H., Kalinowski, J., Bernhardt, J., Slusarenko, A. J., & Antelmann, H. (2019). Staphylococcus aureus responds to allicin by global S thioallylation role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radical Biology and Medicine, 139, 55–69.

Lowry, O. H., Rosebrough, N. G., Farr, A. L., & Randall, R. C. (1951). Protein measurement with the Folin phenol reagent. Jornal of Biological Chemistry, 193(1), 265–275.

Lubenets, V. I. (2003). Tiosulfonaty: Syntez i vlastyvosti [Thiosulfonates: Synthesis and properties]. Ukrainian Chemical Journal, 69(8), 114–121 (in Ukrainian).

Lutsyk, M. D., Kusen, S. Y., & Lukianenko, A. V. (1986). Ochistka i chastichnaja kharakteristika plazmaticheskikh membran kletok zarodyshej vijuna [Assessment and partial characterization of plasma membranes of loach embryo cells]. Ontogenesis, 17, 314–321 (in Russian).

Luzio, J. P., Gray, S. R., & Bright, N. A. (2010). Endosome-lysosome fusion. Biochemical Society Transactions, 38, 1413–1416.

Maluf, M. L., Takahachi, G., Svidzinski, T. I., Xander, P., Apitz Castro, R., Bersani Amado, C. A., & Cuman, R. K. (2008). Antifungal activity of ajoene on experimental murine paracoccidioidomycosis. Revista Iberoamericana de Micologia, 25, 163–166.

Mampuys, P., McElroy, C. R., Clark, J. H., Orru, R. V. A., & Maes, B. U. W. (2019). Thiosulfonates as emerging reactants: Synthesis and applications. Advanced Synthesis and Catalysis, 362, 1–59.

Mita, I. (1984). Timing of morphogenetic events in tetraploid starfish embryos. Journal of Experimental Zoology, 229, 215–222.

Morgan, G. A., Leech, N. L., Gloeckner, G. W., & Barrett, K. C. (2012). IBM SPSS for introductory statistics. In: Use and Interpretation. Fourth Edition. Routledge Taylor & Francis Group, New York.

Müller, A., Eller, J., Albrecht, F., Prochnow, P., Kuhlmann, K., Bandow, J. E., Slusarenko, A. J., & Leichert, L. I. (2016). Allicin induces thiol stress in bacteria through S alylmercapto modification of protein cysteines. Journal of Biological Chemistry, 291(22), 11477–11490.

Nakamoto, M., Kunimura, K., Suzuki, J. I., & Kodera, Y. (2020). Antimicrobial properties of hydrophobic compounds in garlic: Allicin, vinyldithiin, ajoene and diallyl polysulfides (review). Experimental and Therapeutic Medicine, 19, 1550–1553.

Ohara, A. (1993). Voltage dependence of Na+/K+ pump currents in two-cell-stage elastomeres of Cynops pyrrhogaster. Comparative Biochemistry and Physiology, 105(3), 421–426.

Ohta, R., Yamada, N., Kaneko, H., Ishikawa, K., Fukuda, H., Fujino, T., & Suzuki, A. (1999). In vitro inhibition of the growth of Helicobacter pylori by oil-macerated garlic constituents. Antimicrobial Agents and Chemotherapy, 43, 1811–1812.

Rahman, K., & Lowe, G. M. (2006). Garlic and cardiovascular disease: A critical review. Journal of Nutrition, 136, 736–740.

Rai, S. K. (2009). Inhibitory effect of novel diallyldisulfide analogs on HMG-CoA reductase expression in hypercholesterolemic rats: CREB as a potential upstream target. Life Science, 85(5–6), 211–219.

Ranjbar Omid, M., Arzanlou, M., Amani, M., Shokri Al Hashem, S. K., Amir Mozafari, N., & Peeri Doghaheh, H. (2015). Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro. FEMS Microbiology Letters, 362(9), fnv049.

Reiter, J., Levina, N., van der Linden, M., Gruhlke, M., Martin, C., & Slusarenko, A. J. (2017). Diallylthiosulfinate (allicin), a volatile antimicrobial from garlic (Allium sativum), kills human lung pathogenic bacteria, including MDR strains, as a vapor. Molecules, 22(10), 1711.

Roy, N., Davis, S., Narayanankutty, A., Nazeem, P., Babu, T., Abida, P., Valsala, P., & Raghavamenon, A. C. (2016). Garlic phytocompounds possess anticancer activity by specifically targeting breast cancer biomarkers an in silico study. Asian Pacific Journal of Cancer Prevention, 17, 2883–2888.

Steiner, M. (2001). Aged garlic extract, a modulator of cardiovascular risk factors: A dose-finding study on the effects of AGE on platelet functions. Journal of Nutrition, 131(3), 980–984.

Song, J. D., Lee, S. K., Kim, K. M., Park, S. E., Park, S. J., Kim, K. H., Ahn, S. C., & Park, Y. C. (2009). Molecular mechanism of diallyl disulfide in cell cycle arrest and apoptosis in HCT-116 colon cancer cells. Journal of Biochemical and Molecular Toxicology, 23(1), 71–79.

Totha, A., Meyratb, A., Stoldtc, S., Santiagoa, R., Wenzeld, D., Jakobsc, S., von Ballmoosb, C., & Otta, M. (2020). Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes. Proceedings of the National Academy of Sciences, 117(5), 2412–2421.

Ummarino, D. (2017). Mitochondrial calcium efflux essential for heart function. Nature Reviews Cardiology, 14, 317.

Urrego, D., Tomczak, A. P., Zahed, F., Stühmer, W., & Pardo, L. A. (2014). Potassium channels in cell cycle and cell proliferation. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 369(1638), 20130094.

Wacquier, B., Combettes, L., & Dupont, G. (2020). Dual dynamics of mitochondrial permeability transition pore opening. Scientific Reports, 10, 3924.

Wallock Richards, D., Doherty, C. J., Doherty, L., Clarke, D. J., Place, M., Govan, J. R., & Campopiano, D. J. (2014). Garlic revisited: Antimicrobial activity of allicin-containing garlic extracts against Burkholderia cepacia complex. PLoS One, 9(12), 112726.

Wenfeng, H., Yonghui, F., Yongliang, Z., Xiaoping, W., Bin, L., & Junquan, Z. (2021). Diallyl thiosulfinate enhanced the anticancer activity of dexamethasone in the side population cells of multiple myeloma by promoting miR-127-3p and deactivating the PI3K/AKT signaling pathway. BMC Cancer, 21, 125.

Wu, X., Santos, R. R., & Fink Gremmels, J. (2015). Analyzing the antibacterial effects of food ingredients: Model experiments with allicin and garlic extracts on biofilm formation and viability of Staphylococcus epidermidis. Food Science and Nutrition, 3, 158–168.

Zinchenko, M. O., Zinchenko, O. P., & Shchepna, L. V. (2018). Biolohiia indyvidualnoho rozvytku [Biology of individual development]. Media, Lutsk (in Ukrainian).

How to Cite
YaremkevychО., & Lubenets, V. (2023). Influence of potassium p-aminobenzene thiosulfate on the membrane potential and ATPase activity of the plasmatic membrane of the embryos of weatherfish (Misgurnus fossіlis) . Regulatory Mechanisms in Biosystems, 14(1), 145-154.