Antioxidant system of the body of young Ukrainian beef cattle under the action of microelements

  • D. F. Mylostуva Institute of Gastroenterology of the National Academy of Medical Sciences of Ukraine
  • S. J. Farafonov Institute of Potato Growing of the National Academy of Agricultural Sciences of Ukraine
  • O. М. Puzniak Institute of Potato Growing of the National Academy of Agricultural Sciences of Ukraine
  • V. І. Stakhiv Drohobych Ivan Franko State Pedagogical University
  • V. V. Borshchenko Polis National University
  • S. V. Tsisinska National University of Veterinary Medicine and Biotechnologies of Lviv
  • S. V. Voloshin Drohobych Ivan Franko State Pedagogical University
Keywords: mineral additive; young beef cattle; catalase; superoxide dismutase; glutathione peroxidase; ceruloplasmin; tocopherol; lipid peroxidation, lipid hydroperoxides; diene conjugates; malonіс dialdehyde.


Active forms of oxygen are formed in the course of the organism's vital activity in biochemical reactions. These forms, when the pro/antioxidant balance is disturbed, trigger a cascade of lipid peroxidation, which can be the cause of the development of various pathological conditions. To prevent the negative influence of lipid peroxidation products in the body, a powerful antioxidant system is activated. This system consists of an enzymatic and a non-enzymatic link. An important aspect of the normal functioning of this system is the provision of the body with important trace elements. A number of minerals are included in the active center of antioxidant enzymes or have an effect on the reactions of non-enzymatic antioxidants. Research was conducted on fattening bulls of the Ukrainian meat breed. During the monitoring of microelements in feed, it was found that the vast majority of farm feed was deficient in copper, selenium and manganese and for this reason the animals consumed an insufficient amount of these minerals. These data were confirmed by the low content of these trace elements in blood serum. The addition of inorganic salts of microelements to the basic diet led to an increase in the concentration of copper, manganese and selenium in the blood serum by 20.5%, 37.3% and 23.9%. The study of the content of lipid peroxidation products showed that during the 30 days of the experiment, the level of lipid hydroperoxide increased by 25.5%, diene conjugates by 22.8%, and malonic dialdehyde by 22.0%. This indicates that against the background of increased age-related metabolism in the body of young animals, the oxidation-reduction reactions that are a predictor of the start of peroxidation processes increase. It was also noted that with a deficiency of certain trace elements, the activity of both the enzymatic and non-enzymatic links of the antioxidant system was reduced. Thus, in 30 days, the level of catalase, superoxide dismutase, and glutathione peroxidase decreased by 9.4%, 15.3%, and 13.0%, respectively. During this time, the content of tocopherol and ceruloplasmin decreased by 16.8% and 9.8%. Additives also had a positive effect on the activity of the antioxidant system by increasing its components. Additives of trace elements had different effects on the activity of antioxidant enzymes. The greatest effect on the level of catalase and superoxide dismutase was observed when copper salts were added, when the increase of these enzymes was noted by 1.11 and 1.23 times, respectively. Accordingly, the level of glutathione peroxidase was the highest in animals that received additional selenium – 1.21 times. The addition of copper also had the greatest biological effect on the important non-enzymatic component of antioxidant protection – ceruloplasmin. Its level increased by 1.24 times under the action of copper sulfate. The level of tocopherol was higher under the action of manganese, when its concentration was 1.11 times higher than the control. Against this background, there was a decrease in the products of lipid peroxidation: lipid hydroperoxides – 1.19 times under the action of selenium; diene conjugates – by 1.22 times and malonіс dialdehyde – by 1.11 times under the influence of copper and manganese compounds, respectively.


Abuelo, А., Hernández, J., Benedito, J. L., & Castillo, С. (2019). Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidants, 8(1), 20–40.

Amer, S. A., Mohamed, W. A., Gharib, H. S., Al-Gabri, N. A., Gouda, A., Elabbasy, M. T., Abd El-Rahman, G. I., & Omar, A. E. (2021). Changes in the growth, ileal digestibility, intestinal histology, behavior, fatty acid composition of the breast muscles, and blood biochemical parameters of broiler chickens by dietary inclusion of safflower oil and vitamin C. BMC Veterinary Research, 17, 68.

Arredondo, М., González, М., Olivares, М., Pizarro, F., & Araya, М. (2008). Ceruloplasmin, an indicator of copper status. Biological Trace Element Research, 123(1), 261–269.

Ayemele, A. G., Tilahun, M., Lingling, S., Elsaadawy, S. A., Guo, Z., Zhao, G., Xu, J., & Bu, D. (2021). Oxidative stress in dairy cows: Insights into the mechanistic mode of actions and mitigating strategies. Antioxidants, 10(12), 1918–1939.

Azeez, O., & Braimah, S. (2020). Mitigating effect of vitamin-E on copper sulphate-induced toxicity in african catfish (Clarias gariepinus). European Journal of Medical Research, 2(4), 441.

Bahri, S., Kaddour, H., Karoui, D., Bouraoui, S., Amri, M, & Mokni, М. (2019). Protective role of vitamin E against cadmium induced oxidative stress into the rat liver. La Tunisie Médicale, 97(1), 100–105.

Bai, K., Hong, В., He, J., Hong, Z., & Tan, R. (2017). Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. International Journal of Nanomedicine, 12, 4527–4539.

Barcelos, В., Gomes, V., Vidal, A. M. С., De Freitas Júnior, J. E., Garcia Melo Lopes de Araújo, M. L., Alba, H. D. R., & Netto, A. S. (2022). Effect of selenium and vitamin E supplementation on the metabolic status of dairy goats and respective goat kids in the peripartum period. Tropical Animal Health and Production, 54(1), 36–47.

Bizeau, J., Tapeinos, С., Marella, С., Larrañaga, А., & Pandit, А. (2017). Synthesis and characterization of hyaluronic acid coated manganese dioxide microparticles that act as ROS scavengers. Colloids Surf B Biointerfaces, 159, 30–38.

Bordignon, R., Volpato, А., Glombowsky, Р., Souza, C. F., Baldissera, M. D., Secco, R., Pereira, W. A. B., Leal, М. L. R., Vedovatto, M., & Da Silva, A. S. (2019). Nutraceutical effect of vitamins and minerals on performance and immune and antioxidant systems in dairy calves during the nutritional transition period in summer. Journal of Thermal Biology, 84, 451–459.

Broderius, М., Mostad, Е., Wendroth, K., & Prohaska, J. R. (2010). Levels of plasma ceruloplasmin protein are markedly lower following dietary copper deficiency in rodents. Comparative Biochemistry and Physiology. Toxicology and Pharmacology, 151(4), 473–479.

Celi, Р. (2011). Biomarkers of oxidative stress in ruminant medicine. Immunopharmacology and Immunotoxicology, 33(2), 233–240.

Chen, J., Jiang, Y. Shi, Н., Peng, Y., Fan, Х., & Li, С. (2020). The molecular mechanisms of copper metabolism and its roles in human diseases. Pflügers Archiv: European Journal of Physiology, 472(10), 1415–1429.

Dai, W., Qi, C., & Wang, S. (2018). Synergistic effect of glucosamine and vitamin E against experimental rheumatoid arthritis in neonatal rats. Biomédecine and Pharmacothérapie, 105, 835–840.

Dresen, Е., Pimiento, J. M., Patel, J. J., Heyland, D. K., Rice, T. W., & Stoppe, С. (2022). Overview of oxidative stress and the role of micronutrients in critical illness. Journal of Parenteral and Enteral Nutrition, 47(51), S38–S49.

Giménez, V. M. M., Bergam, I., Reiter, R. J., & Manucha, W. (2021). Metal ion homeostasis with emphasis on zinc and copper: Potential crucial link to explain the non-classical antioxidative properties of vitamin D and melatonin. Life Sciences, 281, 119770.

Gulec, S., Anderson, G. J., & Collins, J. F. (2014). Mechanistic and regulatory aspects of intestinal iron absorption. Gastrointestinal and Liver Physiology, 307(4), 397–409.

Harvey, K. M., Cooke, R. F., & da Silva Marques, R. (2021). Supplementing trace minerals to beef cows during gestation to enhance productive and health responses of the offspring. Animals, 11(4), 1159.

Ibrahim, R. E., Amer, S. A., Farroh, K. Y., Al-Gabri, N. A., Ahmed, A. I., El-Araby, D. A., & Ahmed, S. A. (2021). The effects of chitosan-vitamin C nanocomposite supplementation on the growth performance, antioxidant status, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture, 534, 736269.

Kegley, E. B., Ball, J. J., & Beck, P. A. (2016). Bill E. Kunkle interdisciplinary beef symposium: Impact of mineral and vitamin status on beef cattle immune function and health. Journal of Animal Science, 94(12), 5401–5413.

Kiełczykowska, М., Kocot, J., Paździor, М., & Musik, І. (2018). Selenium – a fascinating antioxidant of protective properties. Advances in Clinical and Experimental Medicine, 27(2), 245–255.

Król, Е., Okulicz, М., & Kupsz, J. (2020). The influence of taurine supplementation on serum and tissular Fe, Zn and Cu levels in normal and diet-induced insulin-resistant rats. Biological Trace Element Research, 198(2), 592–601.

Leskovec, J., Levart, A., Svete, A. N., Perić, L., Stojčić, M. Đ., Žikić, D., Salobir, J., & Rezar, V. (2018). Effects of supplementation with α-tocopherol, ascorbic acid, selenium, or their combination in linseed oil-enriched diets on the oxidative status in broilers. Poultry Science, 97, 1641–1650.

Liu, Z., Wang, М., Zhang, С., Zhou, S., & Ji, G. (2022). Molecular functions of ceruloplasmin in metabolic disease pathology. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 15, 695–711.

Lowe, J., Taveira-da-Silva, R., & Hilário-Souza, E. (2017). Dissecting copper homeostasis in diabetes mellitus. International Union of Biochemistry and Molecular Biology Life, 69(4), 255–262.

Mandil, R., Prakash, А., Rahal, A., Singh, S. P., Sharma, D., Kumar, R., & Garg, S. K. (2020). In vitro and in vivo effects of flubendiamide and copper on cyto-genotoxicity, oxidative stress and spleen histology of rats and its modulation by resveratrol, catechin, curcumin and α-tocopherol. BMC Pharmacology and Toxicology, 21(1), 29–39.

Mantzarlis, K., Tsolaki, V., & Zakynthinos, Е. (2017). Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxidative Medicine and Cellular Longevity, 2017, 5985209.

Michalczyk, K., & Cymbaluk-Płoska, А. (2020). The role of zinc and copper in gynecological malignancies. Nutrients, 12(12), 3732.

Mirzad, A. N., Tada, Т., Ano, Н., Kobayashi, І., Yamauchi, Т., & Katamoto, Н. (2018). Seasonal changes in serum oxidative stress biomarkers in dairy and beef cows in a daytime grazing system. Journal of Veterinary Science, 80(1), 20–27.

Miyazawa, Т., Burdeos, G. C., Itaya, М., Nakagawa, K., & Miyazawa, Т. (2019). Vitamin E: Regulatory redox interactions. International Union of Biochemistry and Molecular Biology Life, 71(4), 430–441.

Mostad, E. J., & Prohaska, J. R. (2011). Glycosylphosphatidylinositol-linked ceruloplasmin is expressed in multiple rodent organs and is lower following dietary copper deficiency. Experimental Biology and Medicine, 236(3), 298–308.

Mylostyvyi, R., Izhboldina, O., Chernenko, O., Khramkova, O., Kapshuk, N., & Hoffmann, G. (2020). Microclimate modeling in naturally ventilated dairy barns during the hot season: Checking the accuracy of forecasts. Journal of Thermal Biology, 93, 102720.

Mylostуva, D., Prudnikov, V., Kolisnyk, О., Lykhach, А., Begma, N., Kalinichenko, О., Khmeleva, О., Sanzhara, R., Izhboldina, О., & Mylostyvyi, R. (2022). Biochemical changes during heat stress in productive animals with an emphasis on the antioxidant defense system. Journal of Animal Behaviour and Biometeorology, 10, 2209.

Ognik, K., Sembratowicz, I., Cholewińska, E., Jankowski, J., Kozłowski, K., Juśkiewicz, J., & Zduńczyk, Z. (2018). The effect of administration of copper nanoparticles to chickens in their drinking water on the immune and antioxidant status of the blood. Animal Science Journal, 89, 579–588.

Palomares, R. А. (2022). Trace minerals supplementation with great impact on beef cattle immunity and health. Animals, 12(20), 2839–2849.

Pandey, Р., Kumar, М., Kumar, V., Kushwaha, R., Vaswani, S., Kumar, А., Singh, Y., & Kumar, S. Р. (2022). The dietary supplementation of copper and zinc nanoparticles improves health condition of young dairy calves by reducing the incidence of diarrhoea and boosting immune function and antioxidant activity. Biological Trace Element Research, 2022, in press.

Prais, V. (1976). Analiticheskaya atomno-absorbtsionnaya spektroskopiya [Analytical atomic absorption spectroscopy]. Nauka, Moscow (in Russian).

Rubio, C. P., Escribano, D., Mainau, E., Cerón, J. J., Navarro, Е., & Manteca, Х. (2021). Changes in salivary biomarkers of oxidative status in calves at weaning and grouping. BMC Veterinary Research, 17(1), 373.

Silva, T. H., Guimaraes, І., Menta, P. R., Fernandes, L., Paiva, D., Ribeiro, T. L., Celestino, M. L., Saran Netto, А., Ballou, М. А., & Machado, V. S. (2022). Effect of injectable trace mineral supplementation on peripheral polymorphonuclear leukocyte function, antioxidant enzymes, health, and performance in dairy cows in semi-arid conditions. Journal of Dairy Science, 105(2), 1649–1660.

Sinan Aktas, М., Kandemir, F. M., Kirbas, А., Hanedan, В., & Aydin, M. A. (2017). Evaluation of oxidative stress in sheep infected with Psoroptes ovis using total antioxidant capacity, total oxidant status, and malondialdehyde level. Journal of Veterinary Research, 61(2), 197–201.

Song, Y., Loor, J. J., Li, С., Liang, Y., Li, N., Shu, X., Yang, Y., Feng, Х., Du, Х., Wang, Z., Liu, G., & Li, Х. (2021). Enhanced mitochondrial dysfunction and oxidative stress in the mammary gland of cows with clinical ketosis. Journal of Dairy Science, 104(6), 6909–6918.

Sreekumar, P. G., Su, F., Spee, С., Araujo, Е., Nusinowitz, S., Reddy, S. T., & Kannan, R. (2022). Oxidative stress and lipid accumulation augments cell death in LDLR-Deficient RPE Cclls and Ldlr-/- mice. Cells, 12(1), 43.

Sun, L. L, Gao, S. T., Wang, K., Xu, J. C., Sanz-Fernandez, M. V., Baumgard, L. H., & Bu, D. P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of Dairy Science, 102(1), 311–319.

Tang, J.-Y., Ou-Yang, F., Hou, M.-F., Huang, H.-W., Wang, H.-R., Li, K.-T., Fayyaz, S., Shu, C.-W., & Chang, H.-W. (2019). Oxidative stress-modulating drugs have preferential anticancer effects-involving the regulation of apoptosis, DNA damage, endoplasmic reticulum stress, autophagy, metabolism, and migration. Seminars in Cancer Biology, 58, 109–117.

Tootoonchi, М. Н., Hashempour, М., Blackwelder, P. L., & Fraker, С. А. (2017). Manganese oxide particles as cytoprotective, oxygen generating agents. Acta Biomaterialia, 59, 327–337.

Vasilyev, V. B. (2019). Looking for a partner: Ceruloplasmin in protein-protein interactions. Biometals, 32(2), 195–210.

Vlizlo, V. V., Fedoruk, R. S., Ratych, I. B., Vishchur, O. I., Sharan, M. M., Vudmaska, I. V., Fedorovych, Y. I., Ostapiv, D. D., Stapai, P. V., Buchko, O. M., Hunchak, A. V., Salyha, Y.T., Stefanyshyn, O. M., Hevkan, I. I., Lesyk, Y. V., Simonov, M. R., Nevostruieva, I. V., Khomyn, M. M., Smolianinov, K. B., Havryliak, V. V., Kolisnyk, H. V., Petrukh, I. M., Broda, N. A., Luchka, I. V., Kovalchuk, I. I., Kropyvka, S. Y., Paraniak, N. M., Tkachuk, V. M., Khrabko, M. I., Shtapenko, O. V., Dzen, Y. O., Maksymovych, I. Y., Fedorovych, V. V., Yuskiv, L. L., Dolaichuk, O. P., Ivanytska, L. A., Cirko, Y. M., Kystsiv, V. O., Zahrebelnyi, O. V., Simonov, R. P., Stoianovska, H. M., Kyryliv, B. Y., Kuziv, M. I., Maior, K. Y., Kuzmina, N. V., Talokha, N. I., Lisna, B. B., Klymyshyn, D. O., Chokan, T. V., Kaminska, M. V., Kozak, M. R., Oliinyk, A. V., Holova, N. V., Dubinskyi, V. V., Iskra, R. Y., Rivis, Y. F., Tsepko, N. L., Kyshko, V. I., Oleksiuk, N. P., Denys, H. H., Slyvchuk, Y. I., & Martyn, Y. V. (2012). Laboratorni metody doslidzhen u biolohiji, tvarynnytstvi ta veterynarnij medytsyni [Laboratory research methods in biology, animal husbandry and veterinary medicine]. Spolom, Lviv (in Ukrainian).

Wen, A., Dai, S., Wu, X., & Cai, Z. (2019). Copper bioavailability, mineral utilization, and lipid metabolism in broilers. Czech Journal of Animal Science, 64, 483–490.

Xiao, J., Khan, M. Z., Ma, Y., Alugongo, G. M., Ma, J., Chen, Т., Khan, А., & Cao, Z. (2021). The antioxidant properties of selenium and vitamin E; their role in periparturient dairy cattle health regulation. Antioxidants, 10(10), 1555.

Zheng, G., Zhang, J., Xu, Y., Shen, X., Song, H., Jing, J., Luo, W., Zheng, W., & Chen, J. (2014). Involvement of CTR1 and ATP7A in lead (Pb)-induced copper (Cu) accumulation in choroidal epithelial cells. Toxicology Letters, 225(1), 110–118.

Zhou, Q., Zhu, J., Liu, B., Qiu, J., Lu, X., Curtin, B., Ji, F., & Yu, D. (2021). Effects of high-dose of copper amino acid complex on laying performance, hematological and biochemical parameters, organ index, and histopathology in laying hens. Biological Trace Element Research, 199(8), 3045–3052.

How to Cite
MylostуvaD. F., Farafonov, S. J., PuzniakO. М., StakhivV. І., Borshchenko, V. V., Tsisinska, S. V., & Voloshin, S. V. (2023). Antioxidant system of the body of young Ukrainian beef cattle under the action of microelements . Regulatory Mechanisms in Biosystems, 14(1), 106-111.

Most read articles by the same author(s)