The effect of GdYVO4:Eu3+ nanocrystals on the intercellular adhesion of mesenchymal stem cells in vitro

  • Y. H. Kot V. N. Karazin Kharkiv National University
  • K. V. Kot V. N. Karazin Kharkiv National University
  • N. S. Kavok Institute for Scintillation Materials
  • V. K. Klochkov Institute for Scintillation Materials
Keywords: MSCs; gadolinium orthovanadate nanoparticles; adhesion; cadherins; calreticulins; calcium


Adult stem cells, such as MSCs, spontaneously differentiate in vitro. This makes it difficult both to study this important cell type and to grow large numbers of MSCs for clinical use. While conventional cell cultivation methods cannot cope with this problem, nanostructured materials science offers hope. The effect of small-sized spherical nanoparticles based on orthovanadates of rare-earth elements activated by europium (GdYVO4:Eu3+ nanoparticles, diameter 1–2 nm) on cell-cell adhesion of rat bone marrow mesenchymal stem cells (rBM-MSCs) in vitro was studied using electrophoretic separation of proteins, immunofluorescence and confocal laser scanning microscopy. Our study revealed that rBM-MSCs treated with small-sized GdYVO4:Eu3+ nanoparticles had a significant impairment of intercellular adhesion in vitro. The pre-incubation of mesenchymal stem cells of rat bone marrow with GdYVO4:Eu3+ nanocrystals at a non-toxic concentration of 0.5 µg/mL during 1 hour of cultivation did not lead to significant changes in cell monolayer, the number of cells and the area of cell bodies did not change. However, the density of the monolayer and the area of the cell field decreased after the incubation. The incubation of cells with nanoparticles led to an increase in the area of the intercellular gate – a location of disruption of cell adhesion, compared to cells without nanoparticles in culture medium. The pre-incubation of rBM-MSCs with nanocrystals caused no changes in the content of total cadherins in the plasma membrane; a decrease in the content of cytoplasmic calreticulin and an increase in the content of surface calreticulin; a decrease in the content of free calcium in the cytoplasm, and an increase in protein-bound intercellular calcium and calcium in the extracellular space. The colocalization analysis revealed that the colocalization of calreticulins with cadherins on the outer surface of the plasma membrane of cells significantly increased after the incubation with GdYVO4:Eu3+ nanocrystals. The paper proposes a possible mechanism of reducing the degree of adhesion by nanocrystals. This study emphasizes the possibility of modulating MSCs adhesion using GdYVO4:Eu3+ nanoparticles. The development of new technologies capable of mitigating adhesion is crucial for the development of regenerative strategies using stem cells.


Abdullah, T. M., Whatmore, J., & Bremer, E. (2022). Endoplasmic reticulum stress-induced release and binding of calreticulin from human ovarian cancer cells. Cancer Immunology and Immunotherapy, 71, 1655–1669.

Aglialoro, F., Abay, A., Yagci, N., Rab, M., Kaestner, L., van Wijk, R., von Lindern, M., & van den Akker, E. (2021). Mechanical stress induces Ca2+-dependent signal transduction in erythroblasts and modulates erythropoiesis. International Journal of Molecular Sciences, 22(2), 955.

Alvandi, Z., Al-Mansoori, L., & Opas, M. (2020). Calreticulin regulates Src kinase in osteogenic differentiation from embryonic stem cells. Stem Cell Research, 48, 101972.

Anderson, H. J., Sahoo, J. K., Ulijn, R. V., & Dalby, M. J. (2016). Mesenchymal stem cell fate: Applying biomaterials for control of stem cell behavior. Frontiers in Bioengineering and Biotechnology, 13(4), 38.

Bohuslavskyi, K., & Alabedalkarim, N. (2019). Labeling of Pk-15 cell line with nanoparticles of hadolinium orthovanadate: Influence of time and incubation conditions. JMBS, 4(4), 230–236.

Chen, J. (2022). Recent development of biomaterials combined with mesenchymal stem cells as a strategy in cartilage regeneration. International Journal of Translational Medicine, 3, 456–481.

Dominici, M., Blanc, K. L., & Mueller, I. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. Cytotherapy, 8(4), 315–317.

Drela, K., Stanaszek, L., Nowakowski, A., Kuczynska, Z., & Lukomska, B. (2019). Experimental strategies of mesenchymal stem cell propagation: Adverse events and potential risk of functional changes. Stem Cells International, 2019, 7012692.

Ebihara, L., Acharya, P., & Tong, J. J. (2022). Mechanical stress modulates calcium-activated-chloride currents in differentiating lens cells. Frontiers in Physiology, 31(13), 814651.

Foroozandeh, P., & Aziz, A. A. (2018). Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 13, 339.

Fraile, M., Eiro, N., Costa, L. A., Martín, A., & Vizoso, F. J. (2022). Aging and mesenchymal stem cells: Basic concepts, challenges and strategies. Biology, 11, 1678.

Garber, J. C., Barbee, R. W., Bielitzki, J. T., Clayton, L. A., Donovan J. C. et al. (2011). Guide for the care and use of laboratory animals. 8th edition. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. National Academies Press (US), Washington.

Gimble, J. M., Guilak, F., Nuttall, M. E., Sathishkumar, S., Vidal, M., & Bunnellf, B. A. (2008). In vitro differentiation potential of mesenchymal stem cells. Transfusion Medicine and Hemotherapy Journal, 35(3), 228–238.

Guannan Zhu, G., Chen, L., Zeng, F., Gu, L., Yu, X., Li, X., Jiang, J., Guo, G., Cao, J., Tang, K., Zhu, H., Daldrup-Link, H. E., & Wu, M. (2019). GdVO4:Eu3+Bi3+ nanoparticles as a contrast agent for MRI and luminescence bioimaging. ACS Omega, 4(14), 15806–15814.

Han, Y., Dong, Z., Wang, C., Li, Q., Hao, Y., Yang, Z., Zhu, W., Zhang, Y., Liu, Z., & Feng, L. (2022). Ferrous ions doped calcium carbonate nanoparticles potentiate chemotherapy by inducing ferroptosis. Journal of Controlled Release, 348, 346–356.

Iwahashi, N., Ikezaki, M., Nishitsuji, K., Yamamoto, M., Matsuzaki, I., Kato, N., Takaoka, N., Taniguchi, M., Murata, S.-I., Ino, K., & Ihara, Y. (2021). Extracellularly released calreticulin induced by endoplasmic reticulum stress impairs syncytialization of cytotrophoblast model BeWo cells. Cells, 10, 1305.

Jha, A. K., Xu, X., Duncan, R. L., & Jia, X. (2011). Controlling the adhesion and differentiation of mesenchymal stem cells using hyaluronic acid-based, doubly crosslinked networks. Biomaterials, 32(10), 2466–2478.

Jiang, Y., Dey, S., & Matsunami, H. (2014). Calreticulin: Roles in cell-surface protein expression. Membranes, 4, 630–641.

Jiménez-Jiménez, C., Manzano, M., & Vallet-Regí, M. (2020). Nanoparticles coated with cell membranes for biomedical applications. Biology, 9(11), 406.

Jin, Y., Ding, Y., Richards, M., Kaakinen, M., Giese, W., Baumann, E., Szymborska, A., André, R., Nordling, S., Schimmel, L., Akmeriç, E. B., Pena, A., Nwadozi, E., Jamalpour, M., Holstein, K., Sáinz-Jaspeado, M., Bernabeu, M. O., Welsh, M., Gordon, E., Franco, C. A., Vestweber, D., Eklund, L., Gerhardt, H., & Claesson-Welsh, L. (2022). Tyrosine-protein kinase Yes controls endothelial junctional plasticity and barrier integrity by regulating VE-cadherin phosphorylation and endocytosis. Nature Cardiovascular Research, 1, 1156–1173.

Jody, G., Wang, W.-A., Robinson, A., & Michalak, M. (2022). Calreticulin and the heart. Cells, 11(11), 1722.

Kapate, N., Clegg, J. R., & Mitragotri, S. (2021). Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Advanced Drug Delivery Reviews, 177, 113807.

Klochkov, V. K., Malyshenko, A. I., Sedyh, O. O., & Malyukin, Y. V. (2011). Wet-chemical synthesis and characterization of luminescent colloidal nanoparticles: ReVO4:Eu3+ (Re=La, Gd, Y) with rod-like and spindle-like shape. Functional Materials, 18(1), 111–115.

Leroueil, P. R., Hong, S., Mecke, A., Baker Jr., J. R., Orr, B. G., & Banaszak, H. M.-M. (2007). Nanoparticle interaction with biological membranes: Does nanotechnology present a Janus face? Accounts of Chemical Research, 40(5), 335–342.

Li, K., Shen, Q., Xie, Y., You, M., Huang, L., & Zheng, X. (2018). Incorporation of cerium oxide into hydroxyapatite coating protects bone marrow stromal cells against H2O2‐induced inhibition of osteogenic differentiation. Biological Trace Element Research, 182(1), 91–104.

Liang, Y., Liang, N., Yin, L., & Xiao, F. (2020). Cellular and molecular mechanisms of xenobiotics-induced premature senescence. Toxicology Research, 9(5), 669–675.

Linxia Zhang, L., & Chan, C. (2010). Isolation and enrichment of rat mesenchymal stem cells (MSCs) and separation of single-colony derived MSCs. The Journal of Visualized Experiments, 37, 852.

Lu, H., Guo, L., Kawazoe, N., Tateishi, T., & Chen, G. (2009). Effects of poly(L-lysine), poly(acrylic acid) and poly(ethylene glycol) on the adhesion, proliferation and chondrogenic differentiation of human mesenchymal stem cells. Journal of Biomaterials Science (Polymer Edition), 20(5–6), 577589,

Lu, Y., Yang, Y., Liu, S., & Ge, S. (2022). Biomaterials constructed for MSC-derived extracellular vesicle loading and delivery – a promising method for tissue regeneration. Frontiers in Cell and Developmental Biology, 10, 898394.

Maker, A., Bolejack, M., Schecterson, L., Hammerson, B., Abendroth, J., Edwards, T. E., Staker, B., Myler, P. J., & Gumbiner, B. M. (2022). Regulation of multiple dimeric states of E-cadherin by adhesion activating antibodies revealed through Cryo-EM and X-ray crystallography. PNAS Nexus, 1(4), 163.

Manzanares, D., & Ceña, V. (2020). Endocytosis: The nanoparticle and submicron nanocompounds gateway into the cell. Pharmaceutics, 12(4), 371.

Mao, A. S., Shin, J.-W., & Mooney, D. J. (2016). Effects of substrate stiffness and cell-cell contact on mesenchymal stem cell differentiation. Biomaterials, 98, 181–191.

Mareschi, K., Rustichelli, D., Calabrese, D., Gunetti, M., Sanavio, F., Castiglia, S., Risso, A., Ferrero, I., Tarella, C., & Fagioli, F. (2012). Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: A more advantageous method for clinical use. Stem Cells International, 2012, 920581.

Mathieu, M., Vigier, S., Labour, M. N., Jorgensen, C., Belamie, E., & Noel, D. (2014). Induction of mesenchymal stem cell differentiation and cartilage formation by cross-linker-free collagen microspheres. European Cells and Materials, 28, 82–96.

Matuła, K., Richter, Ł., Adamkiewicz, W., & Holyst, R. (2016). Influence of nanomechanical stress induced by ZnO nanoparticles of different shape on viability of cells. Soft Matter, 12(18), 4162–4169.

Miyoshi, H., & Adachi, T. (2014). Topography design concept of a tissue engineering scaffold for controlling cell function and fate through actin cytoskeletal modulation. Tissue Engineering Reviews (Part B), 20(6), 609–627.

Montel, L., Guigue, Q., & Pontani, L.-L. (2022). Adhesion regulation and the control of cellular rearrangements: From emulsions to developing tissues. Frontiers in Physics, 10, 1014428.

Muraya, K., Kawasaki, T., Yamamoto, T., & Akutsu, H. (2019). Enhancement of cellular adhesion and proliferation in human mesenchymal stromal cells by the direct addition of recombinant collagen i peptide to the culture medium. BioResearch Open Access, 22, 8(1), 210–218.

Natarajan, D., Ye, Z., Wang, L., Ge, L., & Pathak, J. L. (2021). Rare earth smart nanomaterials for bone tissue engineering and implantology: Advances, challenges, and prospects. Bioengineering and Translational Medicine, 7(1), e10262.

Netanya, Y. S., & Engelhardt, J. F. (2014). The basic biology of redoxosomes in cytokine-mediated signal transduction and implications for disease-specific therapies. Biochemistry, 53(10), 1551–1564.

Owusu, B. Y., Zimmerman, K. A., & Murphy-Ullrich, J. E. (2018). The role of the endoplasmic reticulum protein calreticulin in mediating TGF-β-stimulated extracellular matrix production in fibrotic disease. The Journal of Cell Communication and Signaling, 12(1), 289–299.

Pakulova, O. K., Klochkov, V. K., Kavok, N. S., Kostina, I. A., Sopotova, A. S., & Bondarenko, V. A. (2017). Effect of rare-earth-based nanoparticles on the erythrocyte osmotic adaptation. Biophysical Bulletin, 37(1), 42–50.

Palmgren, M., & Morsomme, P. (2019). The plasma membrane H+-ATPase, a simple polypeptide with a long history. Yeast, 36(4), 201–210.

Pan, Y., Shi, L. Z., Yoon, C. W., Preece, D., Gomez-Godinez, V., Lu, S., Carmona, C., Woo, S. H., Chien, S., Berns, M. W., Liu, L., & Wang, Y. (2022). Mechanosensor Piezo1 mediates bimodal patterns of intracellular calcium and FAK signaling. EMBO Journal, 41(17), e111799.

Pastore, C. (2021). Size-dependent nano–bio interactions. Nature Nanotechnology, 16, 1052.

Prokopiuk, V. Y., Tkachenko, A. S., Onishchenko, A. I., Yefimova, S. L., Maksimchuk, P. O., Lazurenko, V. V., & Klochkov, V. K. (2022). LaVO4:Eu3+ nanoparticles show no genotoxicity on fibroblast cultures. In: Nanotechnology and nanomaterials (NANO-2022). Abstract book of participants of the International research and practice conference, 25–27 August 2022. Lviv, LLC APF polygraph service. P. 238.

Robert, A., W., Marcon, B., H., Dallagiovanna, B., & Shigunov, P. (2020). Adipogenesis, osteogenesis, and chondrogenesis of human mesenchymal stem/stromal cells: A comparative transcriptome approach. Frontiers in Cell and Developmental Biology, 8, 561.

Sabourian, P., Yazdani, G., Ashraf, S. S., Frounchi, M., Mashayekhan, S., Kiani, S., & Kakkar, A. (2020). Effect of physico-chemical properties of nanoparticles on their intracellular uptake. International Journal of Molecular Sciences, 21(21), 8019.

Sau, T. P., & Goia, D. (2012). Biomedical application of gold nanoparticles. In: Matijević, E. (Ed). Fine particles in medicine and pharmacy. Springer, New York. Pp. 101–145.

Shang, L., Nienhaus, K., & Nienhaus, G. U. (2014). Engineered nanoparticles interacting with cells: Size matters. Journal of Nanobiotechnology 12(5), 24491160.

Shariatzadeh, S., Moghimi, N., Khalafi, F., Shafiee, S., Mehrabi, M., Ilkhani, S., Tosan, F., Nakhaei, P., Alizadeh, A., Varma, R. S., & Taheri, M. (2022). Metallic nanoparticles for the modulation of tumor microenvironment: A new horizon. Frontiers in Bioengineering and Biotechnology, 10, 847433.

Shin, T. H., Lee, D. Y., Ketebo, A. A., Lee, S., Manavalan, B., Basith, S., Ahn, C., Kang, S. H., Park, S., & Lee, G. (2019). Silica-coated magnetic nanoparticles decrease human bone marrow-derived mesenchymal stem cell migratory activity by reducing membrane fluidity and impairing focal adhesion. Nanomaterials, 9(10), 1475.

Tang, J., Peng, R., & Ding, J. (2010). The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials, 31(9), 2470–2476.

Tkacheva, T. N., Yefimova, S. L., Klochkov, V. K., Borovoy, I. A., & Malyukin, Y. V. (2014). Spectroscopic study of ordered hybrid complexes formation between dye aggregates and ReVO4:Eu3+ (Re = Y, Gd, La) nanoparticles. Journal of Molecular Liquids, 199, 244–250.

Wang, X.-L., Nakamoto, T., Dulinska-Molak, I., Kawazoe, N., & Chen, G.-P. (2016). Regulating the stemness of mesenchymal stem cells by tuning micropattern features. Journal of Materials Chemistry (B), 4(1), 37–45.

Wang, Z., Ruan, J., & Cui, D. (2009). Advances and prospect of nanotechnology in stem cells. Nanoscale Research Letters, 4(7), 593–605.

Xu, J.-J., Zhang, W.-C., Guo, Y.-W., Chen, X.-Y., & Zhange, Y.-N. (2022). Metal nanoparticles as a promising technology in targeted cancer treatment. Drug Delivery, 29(1), 664–678.

Xue, R., Li, J.-Y., Yeh, Y., & Chien, S. (2013). Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation. The Journal of Orthopaedic Research, 31(9), 1360–1365.

Yaman, S., Chintapula, U., Rodriguez, E., Ramachandramoorthy, H., & Nguyen, K.-T. (2020). Cell-mediated and cell membrane-coated nanoparticles for drug delivery and cancer therapy. Cancer Drug Resistance, 3(4), 879–911.

Yamazaki, M., Kojima, H., & Miyoshi, H. (2020). Morphology and differentiation of human mesenchymal stem cells cultured on a nanoscale structured substrate. Electronics and Communications in Japan, 103(9), 23–28.

Yang, Y.-H. K., Ogando, C. R., See, C. W., Chang, T.-Y., & Barabino, G. A. (2018). Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Research and Therapy, 9, 131.

Ye, P., Ye, Y., Chen, X., Zou, H., Zhou, Y., Zhao, X., Chang, Z., Han, B., & Kong, X. (2020). Ultrasmall Fe3O4 nanoparticles induce S-phase arrest and inhibit cancer cells proliferation. Nanotechnology Reviews, 9(1), 61–69.

Yeo, G. C., & Weiss, A. S. (2019). Soluble matrix protein is a potent modulator of mesenchymal stem cell performance. Proceedings of the National Academy of Sciences of the USA, 116(6), 2042–2051.

Yui, A., Caaveiro, J.-M.-M., Kuroda, D., Nakakido, M., Nagatoishi, S., Goda, S., Maruno, T., Uchiyama, S., & Tsumoto, K. (2021). Mechanism of dimerization and structural features of human LI-cadherin. The Journal of Biological Chemistry, 297(3), 101054.

Zhang, Y., Qin, Z., Qu, Z., Ge, M., & Yang, J. (2020). Cadherin-based biomaterials: Inducing stem cell fate towards tissue construction and therapeutics. Progress in Natural Science: Materials International, 30(5), 597–608.

Zhao, A. G., Shah, K., Freitag, J., Cromer, B., & Sumer, H. (2020). Differentiation potential of early- and late-passage adipose-derived mesenchymal stem cells cultured under hypoxia and normoxia. Stem Cells International, 2020, 8898221.

Zhou, M., Li, B., Li, N., Li, M., & Xing, C. (2022). Regulation of Ca2+ for cancer cell apoptosis through photothermal conjugated nanoparticles. ACS Applied Bio Materials, 5(6), 2834–2842.

How to Cite
Kot, Y. H., Kot, K. V., Kavok, N. S., & Klochkov, V. K. (2023). The effect of GdYVO4:Eu3+ nanocrystals on the intercellular adhesion of mesenchymal stem cells in vitro . Regulatory Mechanisms in Biosystems, 14(1), 86-93.