Effects of mineral supplementation on qualitative beef parameters

  • T. V. Farionik Vinnytsia National Agrarian University
  • O. S. Yaremchuk Vinnytsia National Agrarian University
  • O. P. Razanova Vinnytsia National Agrarian University
  • G. M. Ohorodnichuk Vinnytsia National Agrarian University
  • T. L. Holubenko Vinnytsia National Agrarian University
  • V. А. Glavatchuk Vinnytsia National Agrarian University
Keywords: bulls; microelements; chelate elements; nutrition; diet; slaughter parameters; meat quality; productivity.


Correct nutrition with sufficient amount of optimal doses of microelements efficiently supports high levels of beef production and health of the animals throughout the feeding period. In the sphere of beef production, microelements are needed as additional supplements to play an important role in the productivity of cattle and the quality of the products made from them. Providing cattle with a more bioavailable source of deficient microelements could increase the metabolic process of the main nutrients, which would affect the intensity of bull growth and slaughter meat parameters. It has been revealed that organic complexes of deficient microelements have greater bioavailability. Throughout the experiment, Ukrainian Black Spotted bulls of 175–200 kg live weight were fed with diets enriched by chelate compounds of microelements with lysine and methionine. Animals of the second group were fed a diet with methionates of microelements in the following doses, mg/kg of live weight: iron – 0.05, cobalt – 0.04, iodine – 0.05 and selenium – 0.02; the third group received lysinates in the same doses of microelements; and the fourth group was given lysinates and methionates in a complex with half-doses of microelements. The studies were carried out using the following methods: zootechnical (productivity), biochemical (chemical blood composition), morphological (weight and sizes of certain tissues and internal organs), physical-chemical and sanitary meat parameters and statistical (mean arithmetic value and its error, significance level of difference between parameters). We found evidence and confirmed the benefits of using microelement supplemention with essential aminoacids in the bulls’ diet. Feeding chelate supplement to animals during the second feeding period improved hematological parameters, the productivity and nutrition value of beef. We determined that the best outcomes resulted from feeding bulls with lysinates and methionates in complex with microelements (Fe, Co, Se and I) during the second feeding period. The animals had 26.0% higher mean daily increments and 11.1% greater growth rates, and they grew 25.8% more intensively than the others that consumed only the main diet. The animals of this group had 5.2% higher slaughter yield and 4.8% higher carcass yield. The experimental groups were observed to have lower number of microorganisms in the longissimus layer in one field of view when analyzing impression smears. After 14 days of beef storage, qualitative reactions in the control group were positive with formaldehyde, sulphuric-acid copper, Nessler’s reagent and negative with benzidine. The reactions in the samples from experimental groups were doubtful. Less deterioration of beef stored at low positive temperatures (0…+2 ºС) was observed for the samples of experimental groups.


Arthington, J. D., & Ranches, J. (2021). Mineral nutrition of grazing beef cattle. Animals, 11(10), 2767.

Bartoň, L., Teslík, V., Zahrádková, R., & Bureš, D. (2003). Growth, feed efficiency and carcass characteristics of Czech Pied and Holstein bulls. Czech Journal of Animal Science, 48, 459–465.

Brandão, R. K. C., de Carvalho, G. G. P., Silva, R. R., Dias, D. L. S., Mendes, F. B. L., D’Almeida Lins, T. O. J., Filho, G. A., de Souza, S. O., Barroso, D. S., Rufino, L. M. de A., & Tosto, M. S. L. (2016). Comparison of protein and energy supplementation to mineral supplementation on feeding behavior of grazing cattle during the rainy to the dry season transition. Springerplus, 5(1), 933.

Budde, A. M., Sellins, K., Lloyd, K. E., Wagner, J. J., Heldt, J. S., Spears, J. W., & Engle, T. E. (2019). Effect of zinc source and concentration and chromium supplementation on performance and carcass characteristics in feedlot steers. Journal of Animal Science, 97(3), 1286–1295.

Caramalac, L. S., Netto, A. S., Martins, P. G. M. A., Moriel, P., Ranches, J., Fernandes, H. J., & Arthington, J. D. (2017). Effects of hydroxychloride sources of copper, zinc, and manganese on measures of supplement intake, mineral status, and pre- and postweaning performance of beef calves. Journal of Animal Science, 95(4), 1739–1750.

Costa e Silva, L. F., Filho, S. C. V., Engle, T. E., Rotta, P. P., Marcondes, M. I., Silva, F. A. S., Martins, E. C., & Tokunaga, A. T. (2015). Macrominerals and trace element requirements for beef cattle. PLoS One, 10(12), e0144464.

da Silva Zornitta, C., D’Oliveira, M. C., de Lucca Bento, A. L., Rocha, R. F. A. T., Vedovatto, M., & Franco, G. L. (2021). Effect of injectable trace mineral at weaning on growth and physiology of Nellore calves under feed restriction. Tropical Animal Health and Production, 54(1), 18.

Dovgal, O. V. (2020). Rozvytok miasoproduktovoho pidkompleksu APK Ukrainy [Development of meat product subcomplex of agriculture of Ukraine]. Ekonomichnyi Prostir, 164, 31–37 (in Ukrainian).

Edenburn, B. M., Kneeskern, S. G., Bohrer, B. M., Rounds, W., Boler, D. D., Dilger, A. C., & Felix, T. L. (2016). Effects of supplementing zinc or chromium to finishing steers fed ractopamine hydrochloride on growth performance, carcass characteristics, and meat quality. Journal of Animal Science, 94(2), 771–779.

Farionik, T. V. (2015). Vplyv khelatnykh spoluk (metionativ) na morfolohichnyi sklad tush ta dehustatsiinu otsinku miasa, otrymanoho vid tvaryn chorno-riaboji miasnoji porody [Influence of chelate compounds on morphological composition of carcasses and tasting score of meat derived from animals of the black and white meat breed]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, 17(3), 423–426 (in Ukrainian).

Feduchka, M., Molyarchuk, P., Svitelskyi, M., & Revunets, A. (2010). Vplyv mineralnykh dobavok na rist i rozvytok molodniaku VRKh [Effect of mineral supplements on growth and development of young cattle]. Tvarynnytstvo Ukrainy, 11, 32–34 (in Ukrainian).

Genther, O. N., & Hansen, S. L. (2014). Effect of dietary trace mineral supplementation and a multi-element trace mineral injection on shipping response and growth performance of beef cattle. Journal of Animal Science, 92(6), 2522–2530.

Gryban, V. G., & Mylostiva, D. F. (2014). Zabiini yakosti ta khimichnyi sklad yalovychyny za zbahachennia ratsionu mikroelementamy [Butchering characteristics and chemical composition of beef under enrichment of diet with microelements]. Naukovyi Visnyk Lvivskoho Natsionalnoho Universytetu Veterynarnoji Medytsyny ta Biotekhnolohiji Imeni S. Z. Gzhytskoho, 60(4), 45–49 (in Ukrainian).

Holubenko, T. L. (2018). Pishchevaya cennost’ telyatiny kak vazhnejshij kriterij ocenki myasnogo syr’ya dlya detskogo pitaniya [Nutritional value of veal used in baby food production]. Ukrainian Journal of Ecology, 8(1), 637–643 (in Ukrainian).

Ibatullin, I. I., Zhukorskyi, O. M., & Bashchenko, M. I. (2017). Metodolohiia ta orhanizatsijia naukovykh doslidzhen’ u tvarynnytstvi [Methodology and organization of scientific research in animal husbandry]. Agrarian Science, Kyiv (in Ukrainian).

Kincaid, R. L. (1999). Assessment of trace mineral status of ruminants: A review. Journal of Animal Science, 77(1), 1–10.

Kitagawa, T., Funaba, M., & Matsui, T. (2018). Relationships between mineral concentrations and physicochemical characteristics in the Longissimus thoracis muscle of Japanese Black cattle. Journal of Animal Science, 89(1), 211–218.

Kozlowski, H., Janicka-Klos, A., Brasun, J., Gaggelli, E., Valensin, D., & Valensin, G. (2009). Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation). Coordination Chemistry Reviews, 253(21–22), 2665–2685.

Kravtsiv, R. Y., & Paska, M. Z. (2003). Monitorynh makro- ta mikroelementiv u kormakh hospodarstv Zhovkivskoho raionu Lvivskoji oblasti [Monitoring of macro- and microelements in the feed of farms in Zhovkiv District, Lviv Region]. Rural Farmer, 7–8, 6–9 (in Ukrainian).

Liu, Y., Zhang, J., Wang, C., Liu, Q., Guo, G., Huo, W., Chen, L., Zhang, Y., Pei, C., & Zhang, S. (2022). Effects of folic acid and cobalt sulphate supplementation on growth performance, nutrient digestion, rumen fermentation and blood metabolites in Holstein calves. British Journal of Nutrition, 127(9), 1313–1319.

Marques, R. S., Cooke, R. F., Rodrigues, M. C., Cappellozza, B. I., Mills, R. R., Larson, C. K., Moriel, P., & Bohnert, D. W. (2016). Effects of organic or inorganic cobalt, copper, manganese, and zinc supplementation to late-gestating beef cows on productive and physiological responses of the offspring. Journal of Animal Science, 94(3), 1215–1226.

McCarthy, L., Underdahl, S. R., & Dahlen, C. R. (2020). Effects of a vitamin and mineral bolus on beef heifer feedlot performance, feeding behavior, carcass characteristics, and liver mineral concentrations. Translational Animal Science, 13, 4(2), txaa027.

Mikhur, N. I. (2015). Miasna produktyvnist vidhodivelnykh buhaitsiv ta yakisni pokaznyky yalovychyny za riznoji struktury ratsionu [Meat productivity of fattening bulls and qualitative indicators beef for different structures rations]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, 61, 128–134 (in Ukrainian).

Möllerberg, L., Ehlers, T., Jacobsson, S. O., Johnsson, S., & Olsson, I. (1975). The effect of parenteral iron supply on hematology, health, growth and meat classification in veal calves. Acta Veterinaria Scandinavica, 16(2), 197–204.

Moriel, P., & Arthington, J. D. (2013). Effects of trace mineral-fortified, limit-fed preweaning supplements on performance of pre- and postweaned beef calves. Journal of Animal Science, 91(3), 1371–1380.

Muegge, C. R., Brennan, K. M., & Schoonmaker, J. P. (2017). Supplementation of organic and inorganic selenium to late gestation and early lactation beef cows effect on progeny feedlot performance and carcass characteristics. Journal of Animal Science, 95(3), 1356–1362.

Murray, A. C. (1989). Factors affecting beef color at time of grading. Canadian Journal of Animal Science, 69, 347–355.

Nian, Y., Allen, P., Prendiville, R., & Kerry, J. P. (2018). Physico-chemical and sensory characteristics of young dairy bull beef derived from two breed types across five production systems employing two first season feeding regimes. Journal of the Science of Food and Agriculture, 98(5), 1914–1926.

Niedermayer, E. K., Genther-Schroeder, O. N., Loy, D. D., & Hansen, S. L. (2018). Effect of varying trace mineral supplementation of steers with or without hormone implants on growth and carcass characteristics. Journal of Animal Science, 96(3), 1159–1170.

Page, J. K., Wulf, D. M., & Schwotzer, T. R. (2001). A survey of beef muscle color and pH. American Society of Animal Science, 79, 678–687.

Pal, R. P., Mani, V., Mir, S. H., Sharma, A., & Sarkar, S. (2021). Comparative effect of zinc supplementation by hydroxy- and inorganic sources on nutrient utilisation, mineral balance, growth performance and growth biomarkers in pre-ruminant calves. Archives of Animal Nutrition, 75(6), 435–449.

Pereira, V., Carbajales, P., López-Alonso, M., & Miranda, M. (2018). Trace element concentrations in beef cattle related to the breed aptitude. Biological Trace Element Research, 186(1), 135–142.

Prilipko, T. M., & Zakharchuk, P. B. (2019). Pokaznyky produktiv zaboiu bychkiv zalezhno vid selenovmisnykh dobavok u ratsioni [Indicators of food products of slaughtered bulls depending on selected additives in the diet]. Bioresursy i Pryrodokorystuvannia, 11, 146–155 (in Ukrainian).

Pugh, D. G., & Williams, E. I. (1994). Trace mineral nutrition in cattle. In: Pugh, D. G. (Ed.). Proceedings of the Twenty Seventh Annual Convention American Association of Bovine Practitioners, Pittsburgh, Pennsylvania, USA. Vol. 9. Pp. 104–106.

Razanova, O. P. (2018). Pidvyshchennia yakosti miasa perepeliv za zghodovuvannia biolohichno aktyvnykh dobavok na osnovi pidmoru bdzhil [Increasing meat quality of quails fed by biological active additives based on dead bees]. Ukrainian Journal of Ecology, 8(1), 631–636 (in Ukrainian).

Razanova, O., Yaremchuk, O., Gutyj, B., Farionik, T., & Novgorodska, N. (2022). Dynamics of some mineral elements content in the muscle, bone and liver of quails under the apimin influence. Scientific Horizons, 25(5), 22–29.

Senechin, V. V. (2002). Zmina fizyko-khimichnykh ta sanitarnykh pokaznykiv yalovychyny pry korektsii ratsioniv bychkiv metionatamy i lizynatamy mikroelementiv [Changes in the physico-chemical and sanitary parameters of beef when correcting the rations of steers with methionates and lysinates of microelements]. Scientific Works of the Poltava State Agrarian Academy, 21, 246–248 (in Ukrainian).

Skoromna, O. I., Razanova, O. P., & Tkachenko, T. Y. (2019). Effect of lysine feeding allowance on growth performance and carcass characteristics of growing pigs. Ukrainian Journal of Ecology, 9(4), 204–209.

Szacawa, E., Dudek, K., Wasiak, M., Bednarek, D., Bederska-Łojewska, D., Muszyńska, B., & Pieszka, M. (2022). Effect of supplementation with the combination of Se-enriched Lentinula edodes mycelium, exogenous enzymes, acidifiers, sodium butyrate and silicon dioxide nanoparticle feed additives on selected parameters in calves. Molecules, 27(16), 5163.

Tsup, V. I., Tihonova, B. E., & Fedorovich, V. S. (2015). Vykorystannia ekhinatsei purpurovoji u skladi mineral’no-vitaminnoho premiksu pry vyroshchuvanni teliat [The use of Echinacea purpurea in composition of mineral-vitamin premixes in feeding of calves]. Naukovyi Visnyk Lvivskoho Natsionalnoho Universytetu Veterynarnoji Medytsyny ta Biotekhnolohiji Imeni S. Z. Gzhytskoho, 17(3), 337–342 (in Ukrainian).

Usachenko, L. M., Kravtsiv, R. Y., & Kovaliv, L. M. (2008). Vplyv mikroelementnoji dobavky defitsytnykh mikroelementiv (J, Se, Co, Fe, Mn, Zn) na fiziolohichni, biokhimichni ta ekonomichni pokaznyky vidhodivli velykoji rohatoji khudoby [The effect of trace element supplementation of deficient trace elements (J, Se, Co, Fe, Mn, Zn) on the physiological, biochemical and economic parameters of fattening cattle]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, 37, 216–223 (in Ukrainian).

Vlizlo, V. V., Fedoruk, R. S., Ratych, I. B., Vishchur, O. I., Sharan, M. M., Vudmaska, I. V., Fedorovych, Y. I., Ostapiv, D. D., Stapai, P. V., Buchko, O. M., Hunchak, A. V., Salyha, Y. T., Stefanyshyn, O. M., Hevkan, I. I., Lesyk, Y. V., Simonov, M. R., Nevostruieva, I. V., Khomyn, M. M., Smolianinov, K. B., Havryliak, V. V., Kolisnyk, H. V., Petrukh, I. M., Broda, N. A., Luchka, I. V., Kovalchuk, I. I., Kropyvka, S. Y., Paraniak, N. M., Tkachuk, V. M., Khrabko, M. I., Shtapenko, O. V., Dzen, Y. O., Maksymovych, I. Y., Fedorovych, V. V., Yuskiv, L. L., Dolaichuk, O. P., Ivanytska, L. A., Cirko, Y. M., Kystsiv, V. O., Zahrebelnyi, O. V., Simonov, R. P., Stoianovska, H. M., Kyryliv, B. Y., Kuziv, M. I., Maior, K. Y., Kuzmina, N. V., Talokha, N. I., Lisna, B. B., Klymyshyn, D. O., Chokan, T. V., Kaminska, M. V., Kozak, M. R., Oliinyk, A. V., Holova, N. V., Dubinskyi, V. V., Iskra, R. Y., Rivis, Y. F., Tsepko, N. L., Kyshko, V. I., Oleksiuk, N. P., Denys, H. H., Slyvchuk, Y. I., & Martyn, Y. V. (2012). Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii medytsyni [Laboratory research methods in biology, animal husbandry and veterinary medicine]. Lviv (in Ukrainian).

Ward, J. D., & Spears, J. W. (1997). Long-term effects of consumption of low-copper diets with or without supplemental molybdenum on copper status, performance, and carcass characteristics of cattle. Journal of Animal Science, 75(11), 3057–3065.

Wellmann, K. B., Baggerman, J. O., Burson, W. C., Smith, Z. K., Kim, J., Hergenreder, J. E., Rounds, W., Bernhard, B. C., & Johnson, B. J. (2020). Effects of zinc propionate supplementation on growth performance, skeletal muscle fiber, and receptor characteristics in beef steers. Journal of Animal Science, 98(7), skaa210.

Wilson, B. K., Vazquez-Anon, M., Step, D. L., Moyer, K. D., Haviland, C. L., Maxwell, C. L., O’Neill, C. F., Gifford, C. A., Krehbiel, C. R., Richards, C. J. (2016). Effect of copper, manganese, and zinc supplementation on the performance, clinical signs, and mineral status of calves following exposure to bovine viral diarrhea virus type 1b and subsequent infection. Journal of Animal Science, 94(3), 1123–1140.

Yaremchuk, O. S., Razanova, O. P., Skoromna, O. I., Chudak, R. A., Holubenko, T. L., & Kravchenko, O. O. (2022). Post-slaughter indicators of meat productivity and chemical composition of the muscular tissues of bulls receiving corrective diet with proteinvitamin premix. Regulatory Mechanisms in Biosystems, 13(3), 219–224.

Zakharenko, M., Shevchenko, L., Mykhalska, V. M., Maliuha, L. V., & Skyba, O. O. (2004). Rol’ mikroelementiv u zhytti tvaryn [The role of trace elements in animal life]. Veterinary Medicine of Ukraine, 2, 13–16 (in Ukrainian).

How to Cite
Farionik, T. V., Yaremchuk, O. S., Razanova, O. P., Ohorodnichuk, G. M., Holubenko, T. L., & GlavatchukV. А. (2023). Effects of mineral supplementation on qualitative beef parameters . Regulatory Mechanisms in Biosystems, 14(1), 64-69. https://doi.org/10.15421/022310