The prerequisites for the development of type 2 diabetes or prediabetes in rats fed a high-fat diet

  • A. G. Portnychenko Bogomoletz Institute of Physiology
  • M. I. Vasylenko International Center for Astronomical, Medical and Ecological Research, NAS of Ukraine
  • R. B. Aliiev A. G. Portnychenko
  • M. G. Kozlovska Bogomoletz Institute of Physiology, NAS of Ukraine
  • M. O. Zavhorodnii Bogomoletz Institute of Physiology, NAS of Ukraine
  • P. K. Tsapenko International Center for Astronomical, Medical and Ecological Research, NAS of Ukraine
  • K. V. Rozova Bogomoletz Institute of Physiology, NAS of Ukraine
  • V. I. Portnichenko Bogomoletz Institute of Physiology, NAS of Ukraine
Keywords: lipid overload; streptozotocin dosage; insulin resistance; liver steatosis; SREBP-1 expression.


It is known that the pathogenesis of type 2 diabetes in humans is based on two main factors – insulin resistance and inappropriate secretory activity of β-cells of the pancreas. In animals, the role of these mechanisms has not been clearly characterized, and the differences in the manifestations of experimental diabetes under the same conditions are not sufficiently substantiated. In order to study the prerequisites and mechanisms of the development of experimental type 2 diabetes or prediabetes under lipid overload, 6-month-old male Wistar rats were fed a high-fat diet for 4 weeks; after 2 weeks of the experiment, 20 or 25 mg/kg of streptozotocin was administrated. The development of insulin resistance was assessed using the insulin tolerance test. We evaluated the dynamics of glycemia in animals, subcellular signs of liver steatosis, and determined expression of the precursor and mature protein SREBP-1 by immunoblotting. It was found that in rats fed with a high-fat diet during the 2–4th weeks of the experiment, regardless of the administration of streptozotocin, stable insulin resistance and symptoms of prediabetes were detected. The severity of carbohydrate metabolism lesion, which appeared as type 2 diabetes or prediabetes after streptozotocin administration, depended on the level of hepatosteatosis due to high-fat diet, whereas the dose of streptozotocin influenced severity of type 2 diabetes. The use of a high-fat diet led to increased processing and activation of SREBP-1, which was clearly inhibited in type 2 diabetes. Therefore, the level of lipid infiltration of the liver and deregulation of the transcription factor SREBP-1 are risk factors defining development of type 2 diabetes or prediabetes in experimental rats with lipid overloading. Changes in the maturation of SREBP-1 with the use of a high-fat diet confirm that insulin resistance in rats revealed β-cell dysfunction, which closely approximates the mechanisms of experimental type 2 diabetes to main pathways in humans. At the same time, the predisposition to β-cell dysfunction can be a prerequisite that determines compensatory reserves for maintaining carbohydrate and lipid homeostasis under the influence of lipid load in both humans and laboratory animals.


Bravo-Ruiz, I., Medina, M. Á., & Martínez-Poveda, B. (2021). From food to genes: Transcriptional regulation of metabolism by lipids and carbohydrates. Nutrients, 13(5), 1513.

Cheng, C., Ru, P., Geng, F., Liu, J., Yoo, J. Y., Wu, X., Cheng, X., Euthine, V., Hu, P., Guo, J. Y., Lefai, E., Kaur, B., Nohturfft, A., Ma, J., Chakravarti, A., & Guo, D. (2015). Glucose-mediated N-glycosylation of SCAP is essential for SREBP-1 activation and tumor growth. Cancer Cell, 28(5), 569–581.

Fan, W. (2017). Epidemiology in diabetes mellitus and cardiovascular disease. Cardiovascular Endocrinology, 6(1), 8–16.

Furuya, D. T., Binsack, R., & Machado, U. F. (2003). Low ethanol consumption increases insulin sensitivity in Wistar rats. Brazilian Journal of Medical and Biological Research, 36(1), 125–130.

Gilor, C., Niessen, S. J., Furrow, E., & DiBartola, S. P. (2016). What’s in a name? Classification of diabetes mellitus in veterinary medicine and why it matters. Journal of Veterinary Internal Medicine, 30(4), 927–940.

Gołacki, J., Matuszek, M., & Matyjaszek-Matuszek, B. (2022). Link between insulin resistance and obesity-from diagnosis to treatment. Diagnostics, 12(7), 1681.

Herder, C., & Roden, M. (2011). Genetics of type 2 diabetes: Pathophysiologic and clinical relevance. European Journal of Clinical Investigation, 41(6), 679–692.

Kolesnyk, Y. M., Ivanenko, T. V., Abramov, A. V., & Kuzo, N. V. (2016). Current methods of the modeling of experimental diabetes mellitus type 2: A literature review. Patolohiia, 36(1), 10–14.

Krasova, N. S., Hladkykh, O. I., Iaremenko, F., Tyzhnenko, T. V., Leshchenko, Z., Svydlo, I. M., Gromakovska, O. B., Ovsiannikova, T. M., Kovalenko, A. O., Lipson, V. V., & Poltorak, V. V. (2019). Efekty perspektyvnoho aktyvatora syrtuinu-1 na skladovi enerhetychnoho homeostazu u shchuriv z eksperymentalnym diabetom 2 typu na tli ozhyrinnia [Effects of potential sirtuin-1 activator on energy homeostasis constituents in rats with experimental type 2 diabetes mellitus against the background of obesity]. Problemy Endokrynnoji Patolohiji, 70(4), 116–122 (in Ukrainian).

Krentz, N. A. J., & Gloyn, A. L. (2020). Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nature Reviews. Endocrinology, 16(4), 202–212.

Kwak, S. H., & Park, K. S. (2016). Recent progress in genetic and epigenetic research on type 2 diabetes. Experimental and Molecular Medicine, 48(3), e220.

Leahy, J. L. (2008). Pathogenesis of type 2 diabetes mellitus. In: Feinglos, M. N., & Bethel, M. A. (Eds.). Type 2 diabetes mellitus. Contemporary Endocrinology. Humana Press, New York. Pp. 17–33.

Lieshchova, M., & Brygadyrenko, V. (2022). Effects of Origanum vulgare and Scutellaria baicalensis on the physiological activity and biochemical parameters of the blood in rats on a high-fat diet. Scientia Pharmaceutica, 90, 49.

Lieshchova, M., & Brygadyrenko, V. (2023). Effect of Rhodiola rosea rhizomes and Punica granatum fruit peel on the metabolic processes and physiological activity of rats fed with excessive fat diet. Food Technology and Biotechnology, 61(2), in press.

Mansor, L. S., Gonzalez, E. R., Cole, M. A., Tyler, D. J., Beeson, J. H., Clarke, K., Carr, C. A., & Heather, L. C. (2013). Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin. Cardiovascular Diabetology, 12, 136.

Mierziak, J., Kostyn, K., Boba, A., Czemplik, M., Kulma, A., & Wojtasik, W. (2021). Influence of the bioactive diet components on the gene expression regulation. Nutrients, 13(11), 3673.

Mitchell, J. D. (2021). Personalizing risk assessment in diabetes mellitus and metabolic syndrome. JACC Cardiovascular Imaging, 14(1), 230–232.

Nunes, S., Soares, E., Fernandes, J., Viana, S., Carvalho, E., Pereira, F. C., & Reis, F. (2013). Early cardiac changes in a rat model of prediabetes: Brain natriuretic peptide overexpression seems to be the best marker. Cardiovascular Diabetology, 12, 44.

Owen, J. L., Zhang, Y., Bae, S. H., Farooqi, M. S., Liang, G., Hammer, R. E., Goldstein, J. L., & Brown, M. S. (2012). Insulin stimulation of SREBP-1c processing in transgenic rat hepatocytes requires p70 S6-kinase. Proceedings of the National Academy of Sciences of the United States of America, 109(40), 16184–16189.

Percie du Sert, N., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Hurst, V., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., Pearl, E. J., Petersen, O. H., Rawle, F., Reynolds, P., Rooney, K., Sena, E. S., Silberberg, S. D., Steckler, T., Würbel, H. (2020). Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biology, 18(7), e3000411.

Pérez-Belmonte, L. M., Moreno-Santos, I., Cabrera-Bueno, F., Sánchez-Espín, G., Castellano, D., Such, M., Crespo-Leiro, M. G., Carrasco-Chinchilla, F., Alonso-Pulpón, L., López-Garrido, M., Ruiz-Salas, A., Becerra-Muñoz, V. M., Gómez-Doblas, J. J., de Teresa-Galván, E., & Jiménez-Navarro, M. (2017). Expression of sterol regulatory element-binding proteins in epicardial adipose tissue in patients with coronary artery disease and diabetes mellitus: Preliminary study. International Journal of Medical Sciences, 14(3), 268–274.

Reed, M. J., Meszaros, K., Entes, L. J., Claypool, M. D., Pinkett, J. G., Gadbois, T. M., & Reaven, G. M. (2000). A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism: Clinical and Experimental, 49(11), 1390–1394.

Rett, K., & Gottwald-Hostalek, U. (2019). Understanding prediabetes: Definition, prevalence, burden and treatment options for an emerging disease. Current Medical Research and Opinion, 35(9), 1529–1534.

Reynolds, E. S. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17(1), 208–212.

Rushchak, V. V., Kovalenko, V. M., Voronina, A. K., Kitam, V. O., Maksymchuk, O. V., & Chashchyn, M. O. (2012). Optymizatsiia modeli dlia doslidzhenniia patohenezu diabetu 2 typu u tvaryn [Optimization of animal model for investigation of pathogenesis of type 2 diabetes]. Fiziolohichnyi Zhurnal, 58(6), 29–35 (in Ukrainian).

Schmid, A. I., Szendroedi, J., Chmelik, M., Krssák, M., Moser, E., & Roden, M. (2011). Liver ATP synthesis is lower and relates to insulin sensitivity in patients with type 2 diabetes. Diabetes Care, 34(2), 448–453.

Srinivasan, K., Viswanad, B., Asrat, L., Kaul, C. L., & Ramarao, P. (2005). Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacological Research, 52(4), 313–320.

Tanase, D. M., Gosav, E. M., Costea, C. F., Ciocoiu, M., Lacatusu, C. M., Maranduca, M. A., Ouatu, A., & Floria, M. (2020). The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). Journal of Diabetes Research, 2020, 3920196.

Wang, B., Li, Y., Liu, X., Liu, S., & Sun, C. (2011). Effect of the duration of high-fat diet and the dosage of streptozotocin on establishing experimental animal model of type 2 diabetes mellitus. Journal of Hygiene Research, 40(1), 99–106 (in Chinese).

Ye, J., & DeBose-Boyd, R. A. (2011). Regulation of cholesterol and fatty acid synthesis. Cold Spring Harbor Perspectives in Biology, 3(7), a004754.

Yellaturu, C. R., Deng, X., Park, E. A., Raghow, R., & Elam, M. B. (2009). Insulin enhances the biogenesis of nuclear sterol regulatory element-binding protein (SREBP)-1c by posttranscriptional down-regulation of Insig-2A and its dissociation from SREBP cleavage-activating protein (SCAP).SREBP-1c complex. The Journal of Biological Chemistry, 284(46), 31726–31734.

Younossi, Z. M., Golabi, P., de Avila, L., Paik, J. M., Srishord, M., Fukui, N., Qiu, Y., Burns, L., Afendy, A., & Nader, F. (2019). The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. Journal of Hepatology, 71(4), 793–801.

Ziamajidi, N., Khaghani, S., Hassanzadeh, G., Vardasbi, S., Ahmadian, S., Nowrouzi, A., Ghaffari, S. M., & Abdirad, A. (2013). Amelioration by chicory seed extract of diabetes- and oleic acid-induced non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) via modulation of PPARα and SREBP-1. Food and Chemical Toxicology, 58, 198–209.

How to Cite
Portnychenko, A. G., Vasylenko, M. I., Aliiev, R. B., Kozlovska, M. G., Zavhorodnii, M. O., Tsapenko, P. K., Rozova, K. V., & Portnichenko, V. I. (2022). The prerequisites for the development of type 2 diabetes or prediabetes in rats fed a high-fat diet . Regulatory Mechanisms in Biosystems, 14(1), 16-22.