Bioclimatic projection of the ecological niche of curly mallow (Malva verticillata) based on the forecast of the dynamics of the geographical range in the context of global climate change
Abstract
Curly mallow (Malva verticillata L.) is a promising species for cultivation to obtain valuable compounds for the application in medicine, and this species can be used in the bioenergy system to provide industry with alternative energy sources. For the highest economic efficiency, the practical use of this species requires the development of complex measures related to both agrotechnologies and selective breeding. Such measures require resources and there is an urgent problem of assessing the prospects of such investments taking into account the global climate change. Therefore, the problem that we aimed to solve was the assessment of how the global climate change would impact the curly mallow in general in the global context, as well as in the conditions of Ukraine in the next 50–70 years. The database of the Global Biodiversity Information Facility (GBIF) contains 2,104 records of curly-leaved mallow. This species is found on all the continents except Antarctica. Asia accounts for 39.1% of the species’ range, Europe – 53.3%, Africa – 3.6%, North America – 3.2%, South America – 0.1%, Australia – 0.8%. The modelling of M. verticillata response to the climatic factors showed that the best response models were V (in 31.6% of cases) and VII (in 36.8% of cases). Model V characterizes unimodal bell-shaped asymmetric response, and model VII – bimodal asymmetric response. The species response to the mean annual temperature is asymmetric bell-shaped with a shift to the right. The optimal average annual temperature for this species is 9.1 °C. Comparing the distribution of available resources and their use is the basis for identifying the features of the ecological niche of the species. The MaxEnt approach indicates that Southeast Asia and Europe have the most favourable conditions for the existence of this species. Changes in the climatic conditions over the next 50–70 years will make the conditions for the life of M. verticillata in the southern hemisphere unfavourable, and the favourable conditions for it in the northern hemisphere will shift significantly to the north. At the same time, conditions in the autochthonous range of the species will become unfavourable. Obviously, if not for the significant potential of the species to disperse, it would have died out as a result of the significant climate change. The area where favourable conditions for the species will remain unchanged is Central Europe. Conditions in Eastern Europe, including Ukraine, will moderately improve. The results indicate the perspective of the cultivation of curly mallow in Ukraine in the future.References
Abdel-Ghani, A., Hassan, H., & Elshazly, A. (2013). Phytochemical and biological study of Malva parviflora L. grown in Egypt. Zagazig Journal of Pharmaceutical Sciences, 22(1), 17–25.
Abdel-Hamid, N. M., Fawzy, M. A., & El-Moselhy, M. A. (2012). Evaluation of hepatoprotective and anticancer properties of aqueous olive leaf extract in chemically induced hepatocellular carcinoma in rats. American Journal of Medicine and Medical Sciences, 1(1), 15–22.
Alasmary, Z., Todd, T., Hettiarachchi, G. M., Stefanovska, T., Pidlisnyuk, V., Roozeboom, K., Erickson, L., Davis, L., & Zhukov, O. (2020). Effect of soil treatments and amendments on the nematode community under Miscanthus growing in a lead contaminated military site. Agronomy, 10(11), 1727.
Arnell, N. W., & Freeman, A. (2021). The effect of climate change on agro-climatic indicators in the UK. Climatic Change, 165(1–2), 40.
Austin, M. P. (1976). On non-linear species response models in ordination. Vegetatio, 33(1), 33–41.
Austin, M. P. (1999). A silent clash of paradigms: Some inconsistencies in community ecology. Oikos, 86(1), 170.
Austin, M. P. (2013). Vegetation and environment: Discontinuities and continuities. In: van der Maarel, E., & Franklin, J. (Eds.). Vegetation Ecology. John Wiley & Sons, Ltd. Pp. 71–106.
Avtaeva, T., Petrovičová, K., Langraf, V., & Brygadyrenko, V. (2021). Potential bioclimatic ranges of crop pests Zabrus tenebrioides and Harpalus rufipes during climate change conditions. Diversity, 13(11), 559.
Azab, A. (2017). Malva: Food, medicine and chemistry. European Chemical Bulletin, 6(7), 295.
Bao, L., Bao, X., Li, P., Wang, X., & Ao, W. (2018). Chemical profiling of Malva verticillata L. by UPLC-Q-TOF-MS E and their antioxidant activity in vitro. Journal of Pharmaceutical and Biomedical Analysis, 150, 420–426.
Barros, L., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Leaves, flowers, immature fruits and leafy flowered stems of Malva sylvestris: A comparative study of the nutraceutical potential and composition. Food and Chemical Toxicology, 48(6), 1466–1472.
Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S. A., Blach-Overgaard, A., Blok, D., Cornelissen, J. H. C., Forbes, B. C., Georges, D., Goetz, S. J., Guay, K. C., Henry, G. H. R., Hille Ris Lambers, J., Hollister, R. D., Karger, D. N., Kattge, J., Manning, P., & Weiher, E. (2018). Plant functional trait change across a warming tundra biome. Nature, 562(7725), 57–62.
Brandmayr, P. (2016). Climate change and its impact on epigean and hypogean carabid beetles. Periodicum Biologorum, 118(3), 147–162.
Brooker, R. W., Bennett, A. E., Cong, W., Daniell, T. J., George, T. S., Hallett, P. D., Hawes, C., Iannetta, P. P. M., Jones, H. G., Karley, A. J., Li, L., McKenzie, B. M., Pakeman, R. J., Paterson, E., Schöb, C., Shen, J., Squire, G., Watson, C. A., Zhang, C., & White, P. J. (2015). Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytologist, 206(1), 107–117.
Calenge, C. (2006). The package “adehabitat” for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling, 197(3–4), 516–519.
Calenge, C. (2007). Exploring habitat selection by wildlife with adehabitat. Journal of Statistical Software, 22(6), 1–60.
Chen, K., Wang, B., Chen, C., & Zhou, G. (2022). MaxEnt modeling to predict the current and future distribution of Pomatosace filicula under climate change scenarios on the Qinghai–Tibet Plateau. Plants, 11(5), 670.
Cioabla, A. E., Ionel, I., Dumitrel, G.-A., & Popescu, F. (2012). Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnology for Biofuels, 5(1), 39.
Clarke, B., Otto, F., Stuart-Smith, R., & Harrington, L. (2022). Extreme weather impacts of climate change: An attribution perspective. Environmental Research: Climate, 1(1), 012001.
Cuetos, M. J., Martinez, E. J., Moreno, R., Gonzalez, R., Otero, M., & Gomez, X. (2017). Enhancing anaerobic digestion of poultry blood using activated carbon. Journal of Advanced Research, 8(3), 297–307.
Diffenbaugh, N. S., Davenport, F. V., & Burke, M. (2021). Historical warming has increased U.S. crop insurance losses. Environmental Research Letters, 16(8), 084025.
Einarsson, R., & Persson, U. M. (2017). Analyzing key constraints to biogas production from crop residues and manure in the EU – A spatially explicit model. PLoS One, 12(1), e0171001.
Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17(1), 43–57.
Elmendorf, S. C., Henry, G. H. R., Hollister, R. D., Björk, R. G., Boulanger-Lapointe, N., Cooper, E. J., Cornelissen, J. H. C., Day, T. A., Dorrepaal, E., Elumeeva, T. G., Gill, M., Gould, W. A., Harte, J., Hik, D. S., Hofgaard, A., Johnson, D. R., Johnstone, J. F., Jónsdóttir, I. S., Jorgenson, J. C., & Wipf, S. (2012). Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nature Climate Change, 2(6), 453–457.
Engeland, K., Borga, M., Creutin, J.-D., François, B., Ramos, M.-H., & Vidal, J.-P. (2017). Space-time variability of climate variables and intermittent renewable electricity production – A review. Renewable and Sustainable Energy Reviews, 79, 600–617.
Farese, R. V., & Walther, T. C. (2009). Lipid droplets finally get a Little R-E-S-P-E-C-T. Cell, 139(5), 855–860.
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49.
Fitzgibbon, A., Pisut, D., & Fleisher, D. (2022). Evaluation of maximum entropy (MaxEnt) machine learning model to assess relationships between climate and corn suitability. Land, 11(9), 1382.
Franke, K., Strijowski, U., Fleck, G., & Pudel, F. (2009). Influence of chemical refining process and oil type on bound 3-chloro-1,2-propanediol contents in palm oil and rapeseed oil. LWT – Food Science and Technology, 42(10), 1751–1754.
Fu, J., Zhao, L., Liu, C., & Sun, B. (2021). Estimating the impact of climate change on the potential distribution of Indo-Pacific humpback dolphins with species distribution model. PeerJ, 9, e12001.
Gonda, R., Tomoda, M., Shimizu, N., & Kanari, M. (1990). Characterization of an acidic polysaccharide from the seeds of Malva verticillata stimulating the phagocytic activity of cells of the RES 1. Planta Medica, 56(1), 73–76.
H. Seran, T., & Brintha, I. (2010). Review on maize based intercropping. Journal of Agronomy, 9(3), 135–145.
Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485–1496.
Hall, L., Krausman, P., & Morrison, M. (1997). The habitat concept and a plea for standard terminology. Wildlife Society Bulletin, 5, 173–182.
Heegaard, E. (2002). The outer border and central border for species – Environmental relationships estimated by non-parametric generalised additive models. Ecological Modelling, 157(2–3), 131–139.
Henry, A. G., & Piperno, D. R. (2008). Using plant microfossils from dental calculus to recover human diet: A case study from Tell al-Raqā’i, Syria. Journal of Archaeological Science, 35(7), 1943–1950.
Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-niche factor analysis: How to compute habitat – suitability maps without absence data? Ecology, 83(7), 2027–2036.
Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4(1), 37–46.
Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(0), 415–427.
Jansen, F., & Oksanen, J. (2013). How to model species responses along ecological gradients – Huisman-Olff-Fresco models revisited. Journal of Vegetation Science, 24(6), 1108–1117.
Joswig, J. S., Wirth, C., Schuman, M. C., Kattge, J., Reu, B., Wright, I. J., Sippel, S. D., Rüger, N., Richter, R., Schaepman, M. E., van Bodegom, P. M., Cornelissen, J. H. C., Díaz, S., Hattingh, W. N., Kramer, K., Lens, F., Niinemets, Ü., Reich, P. B., Reichstein, M., & Mahecha, M. D. (2021). Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nature Ecology and Evolution, 6(1), 36–50.
Khomyak, I. V., Onischuk, I. P., & Kotsyuba, I. Y. (2017). Ecological spectra of the most abundant lumbricid (Oligochaeta, Lumbricidae) species of the Central Ukrainian (Polissia). Vestnik Zoologii, 51(4), 349–352.
Kintl, A., Elbl, J., Vítěz, T., Brtnický, M., Skládanka, J., Hammerschmiedt, T., & Vítězová, M. (2020). Possibilities of using white sweetclover grown in mixture with maize for biomethane production. Agronomy, 10(9), 1407.
Kintl, A., Huňady, I., Holátko, J., Vítěz, T., Hammerschmiedt, T., Brtnický, M., Ondrisková, V., & Elbl, J. (2022). Using the mixed culture of fodder mallow (Malva verticillata L.) and white sweet clover (Melilotus albus Medik.) for methane production. Fermentation, 8(3), 94.
Koshelev, A. I., Pakhomov, O. Y., Kunakh, O. M., Koshelev, V. A., & Fedushko, M. P. (2020). Temporal dynamic of the phylogenetic diversity of the bird community of agricultural lands in Ukrainian steppe drylands. Biosystems Diversity, 28(1), 34–40.
Landolt, E. (2010). Flora indicative: Ecological indicator values and biological attributes of the flora of Switzerland and the Alps. 2nd ed. Haupt Verlag.
Lee, E. Y., Choi, E.-J., Kim, J. A., Hwang, Y. L., Kim, C.-D., Lee, M. H., Roh, S. S., Kim, Y. H., Han, I., & Kang, S. (2016). Malva verticillata seed extracts upregulate the Wnt pathway in human dermal papilla cells. International Journal of Cosmetic Science, 38(2), 148–154.
Lynch, J., Cain, M., Frame, D., & Pierrehumbert, R. (2021). Agriculture’s contribution to climate change and role in mitigation is distinct from predominantly fossil CO2-emitting sectors. Frontiers in Sustainable Food Systems, 4, 39.
Marcer, A., Sáez, L., Molowny-Horas, R., Pons, X., & Pino, J. (2013). Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biological Conservation, 166, 221–230.
Martin, S., & Parton, R. G. (2006). Lipid droplets: A unified view of a dynamic organelle. Nature Reviews Molecular Cell Biology, 7(5), 373–378.
Meyer, A. K. P., Ehimen, E. A., & Holm-Nielsen, J. B. (2018). Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass and Bioenergy, 111, 154–164.
Michaelis, J., & Diekmann, M. R. (2017). Biased niches – Species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS One, 12(8), 0183152.
Milla, R., & Osborne, C. P. (2021). Crop origins explain variation in global agricultural relevance. Nature Plants, 7(5), 598–607.
Moullec, F., Barrier, N., Drira, S., Guilhaumon, F., Hattab, T., Peck, M. A., & Shin, Y.-J. (2022). Using species distribution models only may underestimate climate change impacts on future marine biodiversity. Ecological Modelling, 464, 109826.
Mueller, J. H., & Schuessler, K. F. (1962). Statistical reasoning in sociology. Houghton Mifflin Company.
Muluneh, M. G. (2021). Impact of climate change on biodiversity and food security: A global perspective – a review article. Agriculture and Food Security, 10(1), 36.
Nair, R., Whittall, A., Hughes, S., Craig, A., Revell, D., Miller, S., Powell, T., & Auricht, G. (2010). Variation in coumarin content of Melilotus species grown in South Australia. New Zealand Journal of Agricultural Research, 53(3), 201–213.
Neuhauser, C. (2001). Mathematical challenges in spatial ecology. Notices of the American Mathematical Society, 48, 1304–1314.
Nix, H. A. (1986). A biogeographic analysis of Australian elapid snakes. In: Longmore, R. (Ed.). Atlas of elapid snakes of Australia. Australian Flora and Fauna Series. Australian Government Publishing Service. No. 7. Pp. 4–15.
Odontuya, G. (2012). Pharmacological activities of a Mongolian medicinal plant, Malva mohileviensis Down. European Journal of Medicinal Plants, 2(3), 230–241.
Ofori, F., & Stern, W. R. (1987). Relative sowing time and density of component crops in a maize/cowpea intercrop system. Experimental Agriculture, 23(1), 41–52.
Pareek, N. (2017). Climate change impact on soils: Adaptation and mitigation. MOJ Ecology and Environmental Sciences, 2(3), 26.
Peng, A., Klanderud, K., Wang, G., Zhang, L., Xiao, Y., & Yang, Y. (2020). Plant community responses to warming modified by soil moisture in the Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 52(1), 60–69.
Phillips, S. J., Dudík, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. Twenty-First International Conference on Machine Learning – ICML ’04, 83.
Pidlisnyuk, V., Shapoval, P., Zgorelec, Ž., Stefanovska, T., & Zhukov, O. (2020). Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia. Environmental Science and Pollution Research, 27(25), 31446–31457.
Pimm, S. L. (2008). Biodiversity: Climate change or habitat loss – which will kill more species? Current Biology, 18(3), R117–R119.
Popp, D., Plugge, C. M., Kleinsteuber, S., Harms, H., & Sträuber, H. (2017). Inhibitory effect of coumarin on syntrophic fatty acid-oxidizing and methanogenic cultures and biogas reactor microbiomes. Applied and Environmental Microbiology, 83(13), 17.
Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., Xu, G., & Pei, S. (2017). Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch., an extremely endangered conifer from Southwestern China. Global Ecology and Conservation, 10, 139–146.
Quave, C. L., Plano, L. R. W., Pantuso, T., & Bennett, B. C. (2008). Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation and adherence of methicillin-resistant Staphylococcus aureus. Journal of Ethnopharmacology, 118(3), 418–428.
Rabii, A., Aldin, S., Dahman, Y., & Elbeshbishy, E. (2019). A review on anaerobic co-digestion with a focus on the microbial populations and the effect of multi-stage digester configuration. Energies, 12(6), 1106.
Rakhmetov, D. B. (1999). Introduction and culture of perspective species of mallow family (Malvaceae) in the Forest-Steppe of Ukraine. Plant Introduction, 2, 25–31.
Ramos-Bueno, R. P., González-Fernández, M. J., & Guil-Guerrero, J. L. (2016). Various acylglycerols from common oils exert different antitumor activities on colorectal cancer cells. Nutrition and Cancer, 68(3), 518–529.
Ray, M. F. (1995). Systematics of Lavatera and Malva (Malvaceae, Malveae)? A new perspective. Plant Systematics and Evolution, 198(1–2), 29–53.
Ray, M. F. (1998). New combinations in Malva (Malvaceae: Malveae). Novon, 8(3), 288.
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421(6918), 57–60.
Salisbury, E. J. (1926). The geographical distribution of plants in relation to climatic factors. The Geographical Journal, 67(4), 312.
Sarkar, S., & Maity, R. (2021). Global climate shift in 1970s causes a significant worldwide increase in precipitation extremes. Scientific Reports, 11(1), 11574.
Sharifi‐Rad, J., Melgar‐Lalanne, G., Hernández‐Álvarez, A. J., Taheri, Y., Shaheen, S., Kregiel, D., Antolak, H., Pawlikowska, E., Brdar‐Jokanović, M., Rajkovic, J., Hosseinabadi, T., Ljevnaić‐Mašić, B., Baghalpour, N., Mohajeri, M., Fokou, P. V. T., & Martins, N. (2020). Malva species: Insights on its chemical composition towards pharmacological applications. Phytotherapy Research, 34(3), 546–567.
Shim, K.-S., Lee, C.-J., Yim, N.-H., Ha, H., & Ma, J. Y. (2016). A water extract of Malva verticillata seeds suppresses osteoclastogenesis and bone resorption stimulated by RANK ligand. BMC Complementary and Alternative Medicine, 16(1), 332.
Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., Sabziparvar, A. A., Ranjbar SaadatAbadi, A., Ranjbar, F., Rousta, I., Zawar-Reza, P., Khoshakhlagh, F., Soltanzadeh, I., Babu, C. A., Azizi, G. H., & Martin, M. V. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126(3–4), 775–795.
Svoboda, N., Taube, F., Kluß, C., Wienforth, B., Kage, H., Ohl, S., Hartung, E., & Herrmann, A. (2013). Crop production for biogas and water protection – A trade-off? Agriculture, Ecosystems and Environment, 177, 36–47.
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240(4857), 1285–1293.
Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10(1), 13768.
Tarasov, V. V. (2012). Flora Dnipropetrovskoyi ta Zaporizkoyi oblastey [Flora of Dnipropetrovsk and Zaporizhia regions]. Lira, Dnipro (in Ukranian).
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Townsend Peterson, A., Phillips, O. L., & Williams, S. E. (2004). Extinction risk from climate change. Nature, 427(6970), 145–148.
Thomas, C., Franco, A., & Hill, J. (2006). Range retractions and extinction in the face of climate warming. Trends in Ecology and Evolution, 21(8), 415–416.
Tofu, D. A., & Mengistu, M. (2023). Observed time series trend analysis of climate variability and smallholder adoption of new agricultural technologies in West Shewa, Ethiopia. Scientific African, 19, e01448.
Turkington, R. A., Cavers, P. B., & Rempel, E. (1978). The biology of Canadian weeds. 29. Melilotus alba Desr. and M. officinalis (L.) Lam. Canadian Journal of Plant Science, 58(2), 523–537.
van der Wiel, K., & Bintanja, R. (2021). Contribution of climatic changes in mean and variability to monthly temperature and precipitation extremes. Communications Earth and Environment, 2(1), 1.
Veshkurova, O., Golubenko, Z., Pshenichnov, E., Arzanova, I., Uzbekov, V., Sultanova, E., Salikhov, S., Williams, H. J., Reibenspies, J. H., & Puckhaber, L. S. (2006). Malvone A, a phytoalexin found in Malva sylvestris (family Malvaceae). Phytochemistry, 67(21), 2376–2379.
Vogl, S., Picker, P., Mihaly-Bison, J., Fakhrudin, N., Atanasov, A. G., Heiss, E. H., Wawrosch, C., Reznicek, G., Dirsch, V. M., Saukel, J., & Kopp, B. (2013). Ethnopharmacological in vitro studies on Austria’s folk medicine – An unexplored lore in vitro anti-inflammatory activities of 71 Austrian traditional herbal drugs. Journal of Ethnopharmacology, 149(3), 750–771.
Wahid, R., Feng, L., Cong, W.-F., Ward, A. J., Møller, H. B., & Eriksen, J. (2018). Anaerobic mono-digestion of lucerne, grass and forbs – Influence of species and cutting frequency. Biomass and Bioenergy, 109, 199–208.
Wilson, C. D., Roberts, D., & Reid, N. (2011). Applying species distribution modelling to identify areas of high conservation value for endangered species: A case study using Margaritifera margaritifera (L.). Biological Conservation, 144(2), 821–829.
Wu, X.-Y., Xiong, J., Liu, X.-H., & Hu, J.-F. (2016). Chemical constituents of the rare cliff plant oresitrophe rupifraga and their antineuroinflammatory activity. Chemistry and Biodiversity, 13(8), 1030–1037.
Zeven, A. C., & de Wet, J. M. J. (1982). Dictionary of cultivated plants and their regions of diversity. Centre for Agricultural Publishing and Documentation.
Zhukov, O., Kunakh, O., Bondarev, D., & Chubchenko, Y. (2022). Extraction of macrophyte community spatial variation allows to adapt the Macrophyte Biological Index for Rivers to the conditions of the middle Dnipro River. Limnologica, 126036.
Zymaroieva, A., Zhukov, O., Fedoniuk, T., & Svenning, J.-C. (2022). Strong decline in breeding-bird community abundance throughout habitats in the Azov region (Southeastern Ukraine) L linked to land-use intensification and climate. Diversity, 14(12), 1028.
Zymaroieva, A., Zhukov, O., Fedoniuk, T., Pinkina, T., & Hurelia, V. (2021). The relationship between landscape diversity and crops productivity: Landscape scale study. Journal of Landscape Ecology, 14(1), 39–58.
Zymaroieva, A., Zhukov, O., Fedonyuk, T., & Pinkin, A. (2019). Application of geographically weighted principal components analysis based on soybean yield spatial variation for agro-ecological zoning of the territory. Agronomy Research, 17(6), 2460–2473.
Zymaroieva, A., Zhukov, O., Romanchuck, L., & Pinkin, A. (2019). Spatiotemporal dynamics of cereals grains and grain legumes yield in Ukraine. Bulgarian Journal of Agricultural Science, 25(6), 1107–1113.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons «Attribution» 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.