Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene

  • O. V. Dubrovna Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine
  • G. O. Priadkina Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine
  • S. I. Mykhalska Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine
  • A. G. Komisarenko Institute of Plant Physiology and Genetics of the National Academy of Sciences of Ukraine
Keywords: RNA-interference; water deficiency; proline; transgenic plants; chlorophylls; productivity


The global climate changes and the consequent increase in the number of soil and air droughts during the vegetation period of grain crops require the development of new strategies to adapt plants to those yield-decreasing stressors. A relevant way of increasing drought-tolerance of cereals is the use of biotechnological methods, particularly RNA interference, which can down-regulate the activity of plants’ genes and increase concentration of stress metabolites that perform osmoprotective functions during drought. We studied the tolerance to soil moisture shortage in transgenic plants of winter wheat with partial suppression of the proline dehydrogenase gene, obtained using the technology of short interfering RNAs. We analyzed physiological and biochemical parameters and structural elements of yield productivity of 4 wild genotypes and their transgenic lines with reduced activity of proline dehydrogenase in the conditions of 7-day drought during the late booting–ear emergence. We determined that the presence of double-stranded RNA suppressor of the proline dehydrogenase gene in transgenic lines led to increase in the level of accumulation of free proline in flag leaves. At the same time, its concentration in transgenic lines was higher than in untransformed plants of the wild genotypes in both drought conditions and conditions of sufficient moisture. We found that against the background of water deficiency, the total chlorophyll content in leaves of plants of transgenic lines was significantly higher, and the ratio of carotenoids to chlorophyll was lower than in plants of the wild genotypes, suggesting mitigation of the negative impact of drought on the plants of transgenic lines. Lacking soil moisture, genetically altered lines of wheat had significantly higher parameters of the structure of grain yield compared with untransformed genotypes. At the same time, we observed genotypic difference according to grain productivity in biotechnological plants. Therefore, the results we obtained confirm the perspectives of using the technology of short interfering RNAs to increase tolerance of winter wheat to water deficiency.


Abdelaal, K., Attia, K., Alamery, S., El-Afry, M., Ghazy, A.-H., Tantawy, D., Al-Doss, A., El-Shawy, E., Abu-Elsaoud, A., & Hafez, Y. (2020). Exogenous application of proline and salicylic acid can mitigate the injurious impacts of drought stress on barley plants associated with physiological and histological characters. Sustainability, 12, 1736.

Anwar, A., Wang, K., & Wang, J. (2021). Expression of Arabidopsis ornithine aminotransferase (AtOAT) encoded gene enhances multiple abiotic stress tolerances in wheat. Plant Cell Reports, 40(7), 1155–1170.

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soils, 39, 205–207.

Bekka, S., Abrous-Belbachir, O., & Djebbar, R. (2018). Effects of exogenous proline on the physiological characteristics of Triticum aestivum L. and Lens culinaris Medik. under drought stress. Acta Agriculturale Slovenica, 111(2), 477–491.

Borsani, O., Zhu, J., Verslues, E. P., Sunkar, R., & Zhu, J.-K. (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell, 123(7), 1279–1291.

Cattivelli, L., Rizza, F., Badeck, F.-W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C., Tondelli, A., & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crop Research, 105(1), 1–14.

Chumakov, M. I., & Moiseeva, E. M. (2012). Technologies of Agrobacterium plant transformation in planta. Applied Biochemistry and Microbiology, 48, 657–666.

Demmig-Adams, B., & Adams, W. W. (1996). Xanthophyll cycle and light stress in nature: Uniform response to excess direct sunlight among higher plant species. Planta, 198, 460–470.

Demyanyuk, O. S. (2015). Prodovol’cha bezpeka Ukrajiny v konteksti zminy klimatu [Food security of Ukraine in the context of climate change]. Agroecological Journal, 4, 14–21 (in Ukrainian).

Dubrovna, O. V., Mykhalska, S. I., & Komisarenko A. G. (2022). Using proline metabolism genes in plant genetic engineering. Cytology and Genetics, 56(4), 361–378.

El Sabagh, A., Hossain, A., Barutcular, C., Gormus, O., Ahmad, Z., Hussain, S., Islam, M., Alharby, H., Bamagoos, A., & Kumar, N. (2019). Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies. Applied Ecology and Environmental Research, 17(2), 4019–4043.

Fire, A. Z. (2007). Gene silencing by double-stranded RNA. Cell Death and Differentiation, 14(12), 1998–2012.

Funck, D., Winter, G., Baumgarten, L., & Forlani, G. (2012). Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biology, 12, 191.

Gao, H., Wang, Y., Xu, P., & Zhang, Z. (2018). Overexpression of a WRKY transcription factor TaWRKY2 enhances drought stress tolerance in transgenic wheat. Frontiers in Plant Science, 9, 997.

Ghosh, U. K., Islam, M. N., Siddiqui, M. N., Cao, X., & Khan, M. A. R. (2022). Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biology, 24(2), 227–239.

Gitelson, A. (2020). Towards a generic approach to remote non-invasive estimation of foliar carotenoid-to-chlorophyll ratio. Journal of Plant Physiology, 252, 153–227.

Hamilton, A., Voinnet, O., Chappell, L., & Baulcombe, D. (2002). Two classes of short interfering RNA in RNA silencing. EMBO Journal, 21, 4671–4679.

Hayat, S., Hayat, Q., Alyemeni, M. N., & Ahmad, A. (2013) Proline enhances antioxidative enzyme activity, photosynthesis and yield of Cicer arietinum L. exposed to cadmium stress. Acta Botanica Croatica, 72, 323–335.

Hiei, Y., Ishida, Y., & Komari, T. (2014). Progress of cereal transformation technology mediated by Agrobacterium tumefaciens. Frontiers in Plant Science, 5, 628.

Hossain, A., Skalicky, M., Brestic, M., Maitra, S., Ashraful, A. M., Syed, M. A., Hossain, J., Sarkar, S., Saha, S., Bhadra, P., Shankar, T., Bhatt, R., Kumar, C. A., El Sabagh, A., & Islam, T. (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the changing climate. Agronomy, 11(2), 241.

Hossain, M. A., Hoque, M. A., Burritt, D. J., & Fujita, M. (2014). Proline protects plants against abiotic oxidative stress: Biochemical and molecular mechanisms. In: Ahmad, P. (Ed.). Oxidative damage to plants. Antioxidant networks and signaling. Academic Press. Pp. 477–521.

Ibragimova, S. S., Kolodyazhnaya, Y. S., Gerasimova, S. V., & Kochetov, A. V. (2012). Partial suppression of gene encoding proline dehydrogenase enhances plant tolerance to various abiotic stresses. Russian Journal of Plant Physiology, 59(1), 88–96.

Joshi, R., Anwar, K., Das, P., & Sneh, L. S.-P. (2017). Overview of methods for assessing salinity and drought tolerance of transgenic wheat lines. Wheat Biotechnology, 1679, 83–95.

Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M., & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10(16), 5692.

Karthikeyan, A., Pandian, S. K., & Ramesh, M. (2011). Transgenic indica rice cv. ADT 43 expressing a D1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tissue and Organ Culture, 107(3), 383–395.

Kaur, G., Asthir, B., & Bains, N. (2018). Modulation of proline metabolism under drought and salt stress conditions in wheat seedlings. Indian Journal of Biochemistry and Biophysics, 55, 114–124.

Khan, M. S., Ahmad, D., & Khan, M. A. (2015). Utilization of genes encoding osmoprotectants in transgenic plants for enhanced stress tolerance. Electronic Journal of Biotechnology, 18, 257–266.

Kolodyazhnaya, Y. S., Titov, S. E., Kochetov, A. V., Komarova, M. L., Romanova, A. V., Koval, V. S., & Shumny, V. K. (2006). Otsenka soleustoychivosti rasteniy Nicotiana tabacum, nesushchikh antismyslovoy supressor gena prolindegidrogenazy [Evaluation of salt tolerance in Nicotiana tabacum plants bearing an antisense suppressor of the proline dehydrogenase gene]. Genetics, 42, 278–281 (in Russian).

Kolupaev, E. Y. (2016). Antioksidanty kletok rasteniy, ikh rol’ v peredache signalov AFK i ustoychivosti rasteniy [Plant cell antioxidants, their role in ROS signaling and plant resistance]. Successes of Modern Biology, 136(2), 181–198 (in Russian).

Kolupaev, Y. E., Vainer, A. A., & Yastreb, T. O. (2014). Prolin: fiziologicheskiye funktsii i regulyatsiya soderzhaniya v rasteniyakh v usloviyakh stressa [Proline: Physiological functions and regulation of its content in plants under stress conditions]. The Bulletin of Kharkiv National Agrarian University, 32, 6–22 (in Russian).

Komisarenko, A. G., Mykhalska, S. I., Kurchii, V. M., & Tishchenko, O. M. (2016). Kharakterystyka transhennykh roslyn sonyashnyku (Helianthus annuus L.) z supresorom hena prolindehidrohenazy [The characterization transgenic sunflower (Helianthus annuus L.) plants with suppressor of proline dehydrogenase gene]. Factors in Experimental Evolution of Organisms, 19, 143–147 (in Ukrainian).

Kіriziy, D. A., & Stasik, O. O. (2022). Vplyv posukhy ta vysokoyi temperatury na fizioloho-biokhimichni protsesy ta produktyvnist’ roslyn [Effects of drought and high temperature on physiological and biochemical processes, and productivity of plants]. Plant Physiology and Genetics, 54(2), 95–122 (in Ukrainian).

Lee, C. H., & Carroll, B. J. (2018). Evolution and diversification of small RNA pathways in flowering plants. Plant and Cell Physiolоgy, 59(11), 2169–2187.

Lesk, C., Rowhani, P., & Ramankutty, N. (2016). Influence of extreme weather disasters on global crop production. Nature, 529(7584), 84–87.

Liu, H., Searle, I. R., Mather, D. E., Able, A. J., & Able, J. A. (2015). Morphological, physiological and yield responses of durum wheat to pre-anthesis water-deficit stress are genotype-dependent. Crop and Pasture Science, 66, 1024–1038.

Maksimov, I. V., Shein, M. Y., & Burhanova, G. F. (2021). RNK-interferentsiya v zashchitnykh sistemakh rasteniy [RNA interference in protective systems of plants]. Russian Journal of Plant Physiology, 68(4), 356–370 (in Russian).

Manavalan, L. P., Chen, X., Clarke, J., Salmeron, J., & Nguyen, H. T. (2012). RNAi-mediated disruption squalen synthase improves drought tolerance and yield in rise. Journal of Experimental Botany, 63(1), 163–75.

Mani, S., Van de Cotte, B., Van Montagu, M., & Verbruggen, N. (2002). Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiology, 128(1), 73–83.

Mattioni, C., Lacerenza, N. G., Troccoli, A. D., De Leonardis, A. M., & Di Fonzo, N. (1997). Water and salt stress-induced alterations in proline metabolism of Triticum durum seedlings. Physiologia Plantarum, 101, 787–792.

Meena, М., Divyanshu, K., Kumar, S., Swapnil, P., Zehra, A., Shukla, V., Yadav, M., & Upadhyay, R. S. (2019). Regulation of L-proline biosynthesis, signal transduction, transport, accumulation and its vital role in plants during variable environmental conditions. Heliyon, 5(12), 02952.

Merzlyak, M. N., Gitelson, A. A., Chivkunova, O. B., & Rakitin, V. Y. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135–141.

Moiseeva, E. M., Agaponov, D. A., Veshkov, V. A., Volokhina, I. V., & Chumakov, M. I. (2012). Povyshennoye soderzhaniye prolina v kukuruze, ekspressiruyushchey fragment gena prolindegidrogenazy v antismyslovoy oriyentatsii [Elevated proline content in maize expressing a fragment of the proline dehydrogenase gene in antisense orientation]. Russian Journal of Plant Physiology, 59(3), 419–422 (in Russian).

Monirul, I., Begum, M. C., Kabir, A. H., & Alam, M. F. (2015). Molecular and biochemical mechanisms associated with differential responses to drought tolerance in wheat (Triticum aestivum L.). Journal of Plant Interactions, 10(1), 195–201.

Morgun, V. V., Stasyk, O. O., Kіriziy, D. A., & Pryadkina, G. O. (2016). Zviazok reaktsii fotosyntetychnykh pokaznykiv i zernovoji produktyvnosti na gruntovu posukhu v kontrastnykh za stijkistiju roslyn ozymoji pshenytsi [Relations between reaction of photosynthetic traits and grain productivity on soil drought in winter wheat varieties contrasting in their tolerance]. Plant Physiology and Genetics, 48(5), 371–381 (in Ukrainian).

Mykhalska, S. I., Komisarenko, A. G., & Kurchii, V. M. (2021). Heny metabolizmu prolinu v biotekhnolohiyi pidvyshchennya osmostabil’nosti pshenyts [Genes of proline metabolism in biotechnology of increasing wheat osmostability]. Factors in Experimental Evolution of Organisms, 28, 94–99 (in Ukrainian).

Mykhalska, S. I., Sergeeva, L. E., Matveeva, A. Y., Kobernik, N. I., Kochetov, A. V., Tishchenko, E. N., & Morgun, V. V. (2014). Povysheniye soderzhaniya svobodnogo prolina v osmotolerantnykh transgennykh rasteniyakh kukuruzy s supressorom dtsRNK gena prolindegidrogenazy [The elevation of free proline content in osmotolerant transgenic corn plants with dsRNA suppressor of proline dehydrogenase gene]. Plant Physiology and Genetics, 46(6), 482–489 (in Russian).

Noor, S., Ali, S., Rehman, H., Ullah, F., & Ali, G. M. (2018). Comparative study of transgenic (DREB1A) and non-transgenic wheat lines on relative water content, sugar, proline and chlorophyll under drought and salt stresses. Sarhad Journal of Agriculture, 34(4), 986–993.

Othmani, A., Ayed, S., Slama-Ayed, O., Slim-Amara, H., & Younes, M. B. (2019). Durum wheat response (Triticum durum Desf.) to drought stress under laboratory conditions. IOSR Journal of Agriculture and Veterinary Science, 12(2), 1–4.

Rasheed, R., Ashraf, M. A., Hussain, I., Haider, M. Z., Kanwal, U., & Iqbal, M. (2014). Exogenous proline and glycine betaine mitigate cadmium stress in two genetically different spring wheat (Triticum aestivum L.) cultivars. Brazilian Journal of Botany, 37(4), 399–406.

Rehman, S., Bilal, M., Rana, R., Tahir, N., Shah, M., Ayalew, H., & Yan, G. (2016). Cell membrane stability and chlorophyll content variation in wheat (Triticum aestivum L.) genotypes under heat and drought conditions. Crop and Pasture Science, 67, 712–718.

Sarker, U., & Oba, S. (2020). The response of salinity stress-induced A. tricolor to growth, anatomy, physiology, non-enzymatic and enzymatic antioxidants. Frontiers in Plant Science, 11, 559876.

Sharifi, P., & Mohammadkhani, N. (2016). Effect of drought stress on photosynthesis factors in wheat genotypes during grain anthesis. Cereal Research Communication, 44(2), 229–239.

Sharma, V., Kumar, A., Chaudhary, A., Mishra, A., Rawat, S. Y. B. B., Shami, V., & Kaushik, P. (2022). Response of wheat genotypes to drought stress stimulated by PEG. Stresses, 2(1), 26–51.

Shewry, Р. R. (2009). Wheat. Journal of Experimental Botany, 60, 1537–1553.

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of Botany, 115(3), 433–447.

Song, M., Xu, W. J., Peng, X. Y., & Kong, F. H. (2013). Effects of exogenous proline on the growth of wheat seedlings under cadmium stress. Ying Yong Sheng Tai Xue Bao, 24(1), 129–134.

Souahi, H. (2021). Impact of lead on the amount of chlorophyll and carotenoids in the leaves of Triticum durum and T. aestivum, Hordeum vulgare and Avena sativa. Biosystems Diversity, 29(3), 207–210.

Sripinyowanich, S., Klomsakul, P., Boonburapong, B., & Bangeekhuny, Т., Asami, T., Gu, H. Y., Buaboocha, T., & Chadchawan, S. (2013). Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress. Environmental and Experimental Botany, 86, 94–105.

Tateishi, Y., Nakagama, T., & Esaka, M. (2005). Osmotolerance and growth stimulation of transgenic tobacco cells accumulating free proline by dehydrogenase expression with double-stranded RNA interference technique. Physiologia Plantarum, 125, 1399–3054.

Tishchenko, E. N. (2013). Gennaja inzhenerija s ispol’zovaniem genov metabolizma L-prolina dlia povyshenija osmotolerantnosti rastenij [Genetic engineering with use of L-proline metabolism genes for increase of plant osmotolerance]. Plant Physiology and Genetics, 45(6), 488–500 (in Russian).

Tishchenko, O. M., Komisarenko, A. G., Mykhalska, S. I., Sergeeva, L. E., Adamenko, N. I., Morgun, B. V., & Kochetov, A. V. (2014). Agrobacterium-mediated transformation of sunflower (Helianthus annuus L.) in vitro and in planta using the LBA4404 strain harboring binary vector pBi2E with dsRNA-suppressor of proline dehydrogenase gene. Cytology and Genetics, 48(4), 19–30.

Uhr, Z., Dobrikova, A., Borisova, P., Yotsova, E., Dimitrov, E., Chipilsky, R., & Popova, A. V. (2022). Assessment of drought tolerance of eight varieties of common winter wheat – a comparative study. Bulgarian Journal of Agricultural Science, 28(4), 668–676.

Vendruscolo, E., Schuster, I., Pileggi, M. Scapim, C. A., Marur, C. J., Vieira, L. G. (2007). Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. Plant Physiology, 164(10), 1367–1376.

Wang, K., Liu, H., Du, L., & Ye, X. (2017). Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties. Plant Biotechnology Journal, 15(5), 614–623.

Wellburn, A. P. (1994). The spectral determination of chlorophyll a and b, as well as carotenoids using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313.

Yu, T. T., Xu, Z. Z., Guo, J. J., Wang, Y. Y., Abernathy, B., Fu, J. J., Chen, X., Zhou, Y. Y., Chen, M., & Ye, X. X. (2017). Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA. Scientific Reports, 7, 44050.

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

Zeng, J., Ping, W., Sanaeifar, A., Xu, X., Luo, W., Sha, J., Huang, Z., Huang, Y., Liu, X., Zhan, B., Zhang, H., & Li, X. (2021). Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods, 17, 4.

Zhang, G.-С., Zhu, W.-L., Junyi, G., & Zhu, Y.-L. (2015). Enhanced salt tolerance of transgenic vegetable soybeans resulting from overexpression of an novel delta(1)-pyrroline-5-carboxylate synthetase gene from Solanum torvum Swartz. Horticulture, Environment, and Biotechnology, 56(1), 94–104.

Zhou, X., Huang, W., Zhang, J., Kong, W., Casa, R., & Huang, Y. (2019). A novel combined spectral index for estimating the ratio of carotenoid to chlorophyll content to monitor crop physiological and phenological status. International Journal of Applied Earth Observation and Geoinformation, 76, 128–142.

How to Cite
Dubrovna, O. V., Priadkina, G. O., Mykhalska, S. I., & Komisarenko, A. G. (2022). Drought-tolerance of transgenic winter wheat with partial suppression of the proline dehydrogenase gene . Regulatory Mechanisms in Biosystems, 13(4), 385-392. https://doi.org/10.15421/022251