Effects of copper citrate on physiological-biochemical parameters of ejaculate of sire boars

  • A. Shostya Poltava State Agrarian University
  • A. Siabro Poltava State Agrarian University
Keywords: microelements; sperm; spermatozoids; peroxidation of lipids; antioxidants; homeostasis


Revealing peculiarities of the course of physiological and biochemical processes in the formation of parameters of ejaculate allows effective correlation of biological completeness of spermatozoids based on the use of chelate compounds of limiting microelements, particularly copper. The study was focused on determining changes in processes of spermatogenesis during correction of mineral nutrition. In the experiment, we used adult boars of the same age, live weight and quality of ejaculates. They consumed copper citrate during the 45 day experiment in doses higher than the norm by 10% (1.5 mg per 1 kg of combined feed) and 20% (3 mg per 1 kg of combined feed) compared with the control. We determined difference in the effects of different doses of copper citrate on the formation of parameters of ejaculates in sire boars. Addition of the mineral additive to the feed in the doses 10% exceeding the norm promoted increase in the parameters of functional activity of spermatozoids – mobility and survival – on day 45 of the intake, which occurred against the background of acceleration of peroxidation processes (increase in the concentration of thiobarbituric acid of active compounds) and activation of the system of antioxidant protection – increase in the activity of superoxide dismutase and decrease in the level of catalase in the sperm. At the same time, we observed increase in the morphometric parameters of spermatozoids – general length, width, length and volume of the head. On day 30, sire boars that had been consuming copper citrate in the amounts 20% above the norm were observed to have increase in concentration of spermatozoids, their mobility and survivability, though a decrease was seen in the morphometric parameters of the gametes. Further intake of this element caused increase in the amount of abnormal forms of spermatozoids. Under the action of this additive, we determined increase in the amount of metabolites of lipid peroxidation – conjugated dienes and thiobarbituric acids of active compounds, and also weakening of the system of antioxidative protection – decrease in the content of reduced glutathione and accumulation of dehydroascorbic acid. Thus, the intake of copper citrate in the amounts of 10% above the norm facilitated morpho-functional parameters of spermatozoids by activating the system of antioxidant protection. It would be promising to conduct further research to determine the effects of copper citrate on the processes of activation and capacitation of spermatozoids and fertilization of oocytes in in vivo and in vitro conditions.


Abdul-Rasheed, O. F. (2010). Association between seminal plasma copper and magnesium levels with oxidative stress in Iraqi infertile men. Oman Medical Journal, 25(3), 168–172.

Banaszewska, D., & Andraszek, K. (2021). Assessment of the morphometry of heads of normal sperm and sperm with the Dag defect in the semen of Duroc boars. Journal of Veterinary Research, 65, 239–244.

Barquero, V., Roldan, E. R. S., Soler, C., Yaniz, J. L., Camacho, M., & Valverde, A. (2021). Predictive capacity of boar sperm morphometry and morphometric sub-populations on reproductive success after artificial insemination. Animals, 11(4), 920.

Celino, F. T., Yamaguchi, S., Miura, C., Ohta, T., Tozawa, Y., Iwai, T., & Miura, T. (2011). Tolerance of spermatogonia to oxidative stress is due to high levels of Zn and Cu/Zn superoxide dismutase. PLoS One, 6(2), e16938.

Devi, G. R., Finetti, P., Morse, M. A., Lee, S., Nonneville, A., Van Laere, S., Troy, J., Geradts, J., McCall, S., & Bertucci, F. (2021). Expression of X-linked inhibitor of apoptosis protein (XIAP) in breast cancer is associated with shorter survival and resistance to chemotherapy. Cancers, 13(11), 2807.

Eidi, M., Eidi, A., Pouyan, O., Shahmohammadi, P., Fazaeli, R., & Bahar, M. (2010). Seminal plasma levels of copper and its relationship with seminal parameter. Iranian Journal of Reproductive Medicine, 8(2), 60–65.

Erohina, N. I., & Zernaeva, L. A. (2020). Uluchshenie reproduktivnoj funkcii krupnogo rogatogo skota putem profilaktiki nedostatka medi v organizme [Improving the reproductive function of cattle by preventing a lack of copper in the body]. Innovatika i Ekspertiza, 2(30), 170–177 (in Russian).

Esakky, P., Hansen, D. A., Drury, A. M., & Moley, K. H. (2013). Molecular analysis of cell type-specific gene expression profile during mouse spermatogenesis by laser microdissection and qRT-PCR. Reproductive Sciences, 20(3), 238–252.

Fallah, A., Mohammad-Hasani, A., & Hosseinzadeh Colagar, A. (2018). Zinc is an essential element for male fertility: A review of Zn roles in men’s health, germination, sperm quality, and fertilization. Journal of Reproduction and Infertility, 19(2), 69–81.

Garcia, F., Gadea, J., Matas, C., & Holt, W. (2016). Importance of sperm morphology during sperm transport and fertilization in mammals. Asian Journal of Andrology, 18(6), 844–850.

Gil, M. C., Garcia-Herreros, M., Baron, F. J., Aparicio, I. M., Santos, A. J., & Garcia-Marin, L. J. (2009). Morphometry of porcine spermatozoa and its functional significance in relation with the motility parameters in fresh semen. Theriogenology, 71(2), 254–263.

Gillies, E. A., Cannon, R. M., Green, R. B., & Pacey, A. A. (2009). Hydrodynamic propulsion of human sperm. Journal of Fluid Mechanics, 625, 445–474.

Gorski, K., Kondracki, S., & Wysokinska, A. (2017). Ejaculate traits and sperm morphology depending on ejaculate volume in duroc boars. Journal of Veterinary Research, 61(1), 121–125.

Gorski, K., Kondracki, S., Wysokinska, A., & Iwanina, M. (2018). Dependence of sperm morphology and ejaculate characteristics on sperm concentration in the ejaculates of Hypor boars. Journal of Veterinary Research, 62(3), 353–357.

Hayat, S. S., Bragina, E. E., & Kurilo, L. F. (2012). Ultrastrukturnoe issledovanie spermatozoidov u pacientov s astenozoospermiej [Ultrastructural investigation of human sperm from asthenozoospermic men]. Andrologiya i genitalnaya hirurgiya, 13(4), 54–61 (in Russian).

Hirai, M., Boersma, A., Hoeflich, A., Wolf, E., Foll, J., Aumuller, R., & Braun, A. J. (2001). Objectively measured sperm motility and sperm head morphometry in boars (Sus scrofa): Relation to fertility and seminal plasma growth factors. Journal of Andrology, 22(1), 104–110.

Horky, P., Sochor, J., Skladanka, J., Klusonova, I., & Nevrkla, P. (2016). Effect of selenium, vitamins E and C on antioxidant potential and quality of boar ejaculate. Journal of Animal and Feed Sciences, 25(1), 29–36.

Javed, M., & Michael, E. (2014). Healthy birth after use of sperm from a male who suffered from copper toxicity. Cureus, 6(5), e180.

Knecht, D., Srodon, S., & Duzinsk, K. (2014). The influence of boar breed and season on semen parameters. South African Journal of Animal Science, 44(1), 1–9.

Kodama, H., Fujisawa, C., & Bhadhprasit, W. (2012). Inherited copper transport disorders: Biochemical mechanisms, diagnosis, and treatment. Current Drug Metabolism, 13(3), 237–250.

Kornyat, S. B., Yaremchuk, I. M., Andrushko, O. B., Ostapiv, D. D., Sharan, M. M., & Chajkovska, O. I. (2019). Intensyvnist okysnykh protsesiv u spermi knuriv za dodavannia nanosuktsynativ metaliv u rozridzhuvach “Ekosperm” [Intensity of oxidative processes in boar semen with the addition of metal nanosuccinates to the diluent “Ekosperm”]. Naukovo-Tekhnichnyi Biuleten Derzhavnoho Naukovo-Doslidnoho Kontrolnoho Instytutu Veterynarnykh Preparativ ta Kormovykh Dobavok i Instytutu Biolohii Tvaryn, 20(2), 352–357 (in Ukrainian).

Korolyuk, L. I., Ivanova, I. G., & Majorova, V. E. (1988). Metod opredeleniya katalazy [Method for determination of catalase]. Laboratornoe Delo, 1, 16–19 (in Russian).

Kurkowska, W., Bogacz, A., Janiszewska, M., Gabrys, E., Tiszler, M., Bellanti, F., Kasperczyk, S., Machon-Grecka, A., Dobrakowski, M., & Kasperczyk, A. (2020). Oxidative stress is associated with reduced sperm motility in normal semen. American Journal of Men’s Health, 14(5), 1557988320939731.

Liu, J. Y., Yang, X. F., Sun, X., Zhuang, C., Xu, F., & Li, Y. (2016). Suppressive effects of copper sulfate accumulation on the spermatogenesis of rats. Biological Trace Element Research, 174(2), 356–361.

Mario, M. (2014). Abnormal copper homeostasis: Mechanisms and roles in neurodegeneration. Toxics, 2(2), 327–345.

Melnyk, V. O., & Kravchenko, O. O. (2016). Biotekhnolohiia vidtvorennia v pleminnomu svynarstvi [Biotechnology of reproduction in breeding pig breeding]. MNAU, Mykolajiv (in Ukrainian).

Melnyk, Y. F. (2003). Instruktsija zi shtuchnoho osimeninnia svynej [Instructions for artificial insemination of pigs]. Agrarna Nauka, Kyiv (in Ukrainian).

Montoto, L. G., Sanchez, M. V., Tourmente, M., Martin-Coello, J., Luque-Larena, J. J., Gomendio, M., & Roldan, E. R. S. (2011). Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: Head first. Reproduction, 142(6), 819–830.

Mufti, A. R., Burstein, E., Csomos, R. A., Graf, P. C. F., Wilkinson, J. C., Dick, R. D., Challa, M., Son, J. K., Bratton, S. B., Su, G. L., Brewer, G. J., Jakob, U., & Duckett1, C. S. (2006). XIAP is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Molecular Cell, 21(6), 775–785.

Nandi, A., Yan, L. J., Jana, C. K., & Das, N. (2019). Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxidative Medicine and Cellular Longevity, 2019, 9613090.

Nenkova, G., Petrov, L., & Alexandrova, А. (2017). Role of trace elements for oxidative status and quality of human sperm. Balkan Medical Journal, 34(4), 343–348.

Ogorek, M., Gasior, L., Pierzchala, O., Daszkiewicz, R., & Lenartowicz, M. (2017). Role of copper in the process of spermatogenesis. Postepy Higieny i Medycyny Doswiadczalnej, 71, 662–680.

Pavlova, I. V. (2020). Morfo-fiziolohichni osoblyvosti spermijiv knuriv-plidnykiv riznykh porid pid chas teplovoho stresu [Morphological and physiological peculiarities of different breed boars’ spermatozoa under the action of heat stress]. Visnyk Poltavskoji Derzhavnoji Ahrarnoji Akademiji, 3, 189–195 (in Ukrainian).

Peruma, P., Chamuah, J. K., & Rajkhowa, C. (2013). Effect of catalase on the liquid storage of mithun (Bos frontalis) semen. Asian Pacific Journal of Reproduction, 2(3), 209–214.

Perumal, P. (2014). Effect of superoxide dismutase on semen parameters and antioxidant enzyme activities of liquid stored (5 ∘C) mithun (Bos frontalis) semen. Journal of Animals, 2014, 821954.

Pesch, S., Bergmann, M., & Bostedt, H. (2006). Determination of some enzymes and macro- and microelements in stallion seminal plasma and their correlations to semen quality. Theriogenology, 66(2), 307–313.

Pintus, E., & Ros-Santaella, J. L. (2021). Impact of oxidative stress on male reproduction in domestic and wild animals. Antioxidants, 10(7), 1154.

Pipan, M. Z., Mrkun, J., Kosec, M., Svete, A. N., & Zrimsek, P. (2014). Superoxide dismutase: A predicting factor for boar semen characteristics for short-term preservation. BioMed Research International, 2014, 105280.

Pipan, M. Z., Mrkun, J., Strajn, B. J., Vrtac, K. P., Kos, J., Pislar, A., & Zrimsek, P. (2017). The influence of macro- and microelements in seminal plasma on diluted boar sperm quality. Acta Veterinaria Scandinavica, 59(1), 11.

Remita, F., Abdennour, C., Talbi, A., & Khelili, K. (2020). Protective role of Crataegus monogyna on sperm quality and testis oxidative stress against copperinduced toxicity. Journal of Faculty of Pharmacy of Ankara University, 44(3), 452–469.

Rodriguez, A., Soom, A., Arsenakis, I., & Mae, D. (2017). Boar management and semen handling factors affect the quality of boar extended semen. Porcine Health Management, 3, 15.

Rokotianska, V. O. (2018). Vplyv nanoakvakhelativ na biolohichnu povnotsinnist’ spermijiv [Influence of nanoaquachelates on the biological value of sperm]. Visnyk Ahrarnoji Nauky Prychornomorja, 3, 56–61 (in Ukrainian).

Roy, D., Dey, S., Majumder, G., & Bhattacharyya, D. (2013). Copper: A biphasic regulator of caprine sperm forward progression. Systems Biology in Reproductive Medicine, 60(1), 52–57.

Roychoudhury, S., Massanyi, P., Bulla, J., Choudhury, M. D., Straka, L., Lukac, N., Formicki, G., Dankova, M., & Bardos, L. (2010). In vitro copper toxicity on rabbit spermatozoa motility, morphology and cell membrane integrity. Toxic / Hazardous Substances and Environmental Engineering, 45(12), 1482–1491.

Rubio-Riquelme, N., Huerta-Retamal, N., Gomez-Torres, M. J., & Martinez-Espinosa, R. M. (2020). Catalase as a molecular target for male infertility diagnosis and monitoring: An overview. Antioxidants, 9(1), 78.

Rudneva, S. A., & Chernyh, V. B. (2018). Mehanizm dvizheniya zhgutikov spermatozoidov [The mechanism of movement of the flagella of spermatozoa]. Andrologiya i Genitalnaya Hirurgiya, 19(3), 15–26 (in Russian).

Rungruangsak, J., Sangkaphet, S., Buranaamnuay, K., Pongpeng, P., & Tummaruk, P. (2021). Boar sperm production in a tropical environment. The Thai Journal of Veterinary Medicine, 51(2), 213–220.

Rybalko, V. P. (2005). Suchasni metodyky doslidzhen’ u svynarstvi [Modern research methods in pig breeding]. PDAA, Poltava (in Ukrainian).

Rybalko, V. P., Usenko, S. A., Shostya, A. M., Tenditnik, V. S., Ilchenko, M. A., & Smyslov, S. Y. (2020). Ispolzovanie laktatov mikroelementov dlya povysheniya sohranyaemoj spermy hriakov [Using lactates of microelements to improve the quality of preserved sperm of boar]. Zootehniya, 7, 23–32 (in Russian).

Said, T. M., Agarwal, A., Sharma, R. K., Thomas, A. J., & Sikka, S. C. (2005). Impact of sperm morphology on DNA damage caused by oxidative stress induced by β-nicotinamide adenine dinucleotide phosphate. Fertility and Sterility, 83(1), 95–103.

Saravia, F., Nunez-Martinez, I., Moran, J., Soler, C., Muriel, A., Rodriguez-Martinez, H., & Pena, F. (2007). Differences in boar sperm head shape and dimensions recorded by computer-assisted sperm morphometry are not related to chromatin integrity. Theriogenology, 68(2), 196–203.

Semenov, S. O., Bindiuh, O. A., Zinoviev, S. H., & Bindiuh, D. O. (2015). Yakist’ spermoproduktsiji knuriv za umov zghodovuvannia jim bioprotektora mineralnoho “Mg++” [The quality of boar sperm production under the conditions of feeding them the mineral bioprotector “Mg++”]. Svynarstvo, 66, 96–105 (in Ukrainian).

Shabunin, S. V. (2010). Metodicheskie polozhenia po izucheniju processov svobodnoradikalnogo okislenija v sisteme antioksidantnoj zashity organizma [Methodological provisions for studying the processes of free radical oxidation and the system of antioxidant defense of the body]. Vserossijskij Nauchno-Issledovatelskij Veterinarnyj Istitut Patologii, Farmakologii i Terapii Rosselhozakademii, Voronezh (in Russian).

Shostia, A. M. (2009). Rol’ aktyvnykh form kysniu v rehuliatsiji spermatohenezu ta zaplidnenni u ssavtsiv [The role of reactive oxygen species in the regulation of spermatogenesis and fertilization in mammals]. Ukrainskyi Biokhimichnyi Zhurnal, 81(1), 14–22 (in Ukrainian).

Shostia, A. M., Rokotianska, V. O., Tsybenko, V. H., Sokyrko, M. P., Hyria, V. M., Nevidnychyi, O. S., Kaplunenko, V. H., & Pashchenko, A. H. (2018). Vplyv nanoakvakhelativ na yakist’ spermoproduktsiji u knuriv-plidnykiv [Influence of nanoaquachelates on the quality of boars’ sperm]. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu, 35, 156–160 (in Ukrainian).

Shostya, A., Pavlova, I., Slynko, V., Chukhlib, Y., Yukhno, V., Shaferivskyi, В., & Sokirko, M. (2021). Quality of the Poltava meat breeding boars sperm production depending on their use regimens and under the effect of “Humilid” feed supplement. Miedzynarodowe Czasopismo Naukowe / Historical Sciences, Agricultural Sciences, 12(99), 18–23.

Silvestre, M. A., Yaniz, J. L., Pena, F. J., Santolaria, P., & Castello-Ruiz, M. (2021). Role of antioxidants in cooled liquid storage of mammal spermatozoa. Antioxidants, 10(7), 1096.

Smital, J., Wolf, J., & De Sousa, L. L. (2005). Estimation of genetic parameters of semen characteristics and reproductive traits in AI boars. Animal Reproduction Science, 86, 119–130.

Sutovsky, P., Kerns, K., Zigo, M., & Zuidema, D. (2019). Boar semen improvement through sperm capacitation management, with emphasis on zinc ion homeostasis. Theriogenology, 137(2), 50–55.

Tvrda, E., Peer, R., Sikka, S., & Agarwal, A. (2015). Iron and copper in male reproduction: A double-edged sword. Journal Assisted Reproduction and Genetics, 32(1), 3–16.

Usenko, S., Shostya, A., Birta, G., Slynko, V., & Chukhlib, Y. (2020). Osoblyvosti prooksydantno-antyoksydantnoho homeostazu u spermi knuriv-plidnykiv za korektsiji mineralnoho zhyvlennia [Peculiarities of the formation of prooxidant-antioxidant homeostasis in the sperm of boars by correction of mineral nutrition]. Veterynariia, Tekhnolohii Tvarynnytstva ta Pryrodokorystuvannia, 5, 198–205 (in Ukrainian).

Vashchenko, G., & MacGillivray, R. T. A. (2013). Multi-copper oxidases and human iron metabolism. Nutrients, 5(7), 2289–2313.

Vlizlo, V. V. (2004). Fizioloho-biokhimichni metody doslidzhen’ u biolohii, tvarynnytstvi ta veterynarnij medytsyni [Physiological and biochemical research methods in biology, animal husbandry and veterinary medicine]. Instytut Biolohii Tvaryn of UAAN, Lviv (in Ukrainian).

Wang, C., Li, J. L., Wei, H. K., Zhou, Y. F., Tan, J. J., Sun, H. Q., Jiang, S. W., & Peng, J. (2017). Linear growth model analysis of factors affecting boar semen characteristics in Southern China. American Society of Animal Science, 95(12), 5339–5346.

Wu, Y., Guo, L., Liu, Z., Wei, H., Zhou, Y., Tan, J., Sun, H., Li, S., Jiang, S., & Peng, J. (2019). Microelements in seminal and serum plasma are associated with fresh semen quality in Yorkshire boars. Theriogenology, 132(1), 88–94.

Yablonskyi, V. A. (2002). Praktychne akusherstvo, hinekolohija ta biotekhnolohija vidtvorennia tvaryn z osnovamy androlohiji [Practical obstetrics, gynecology and biotechnology of animal reproduction with the basics of andrology]. Meta, Kyiv (in Ukrainian).

How to Cite
Shostya, A., & Siabro, A. (2022). Effects of copper citrate on physiological-biochemical parameters of ejaculate of sire boars . Regulatory Mechanisms in Biosystems, 13(2), 121-129. https://doi.org/10.15421/022217