Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize crops

  • V. V. Yukhymuk Institute of Plant Physiology and Genetics of National Academy of Sciences of Ukraine
  • M. P. Radchenko Institute of Plant Physiology and Genetics of National Academy of Sciences of Ukraine
  • S. K. Sytnik Institute of Plant Physiology and Genetics of National Academy of Sciences of Ukraine
  • Y. Y. Morderer Institute of Plant Physiology and Genetics of National Academy of Sciences of Ukraine
Keywords: resistance of weeds; tolpyralate; terbuthylazine; rimsulfuron; synergism and antagonism in herbicide combinations


Many countries are now facing the problem of increase in resistant biotypes of weeds. The spread of herbicide-resistant weeds across agrophytocenoses poses a threat of decrease in the effectiveness of use of herbicides in agricultural fields. In order to develop anti-resistant compositions of herbicides for protection of maize (Zea mays L.) crops, we studied effects of interaction and efficiency of weed control in greenhouse and field experiments. We studied the possibility of combined use of 4-hydroxyphenyl pyruvate dioxygenase-inhibiting herbicide tolpyralate and inhibitor of transport of electrons in photosystem 2 of chloroplasts – terbuthylazine – and acetolactate synthase-inhibiting rimsulfuron. In greenhouse experiments on model objects, we found that interaction in the mixtures of tolpyralate with rimsulfuron was antagonistic, but the antagonism may be overcome by increasing the rate of applied rimsulfuron. At joint use of tolpyralate and terbuthylazine, a synergistic increase in phytotoxic effect was observed, caused by increase in the effectiveness of the blocking electron-transport chain and increase in intensity of formation of reactive oxygen species. According to the results of the field experiments, we drew the conclusion that the efficacy of using the mixture of tolpyralate and rimsulfuron depends on the species composition of weeds. In the presence of rimsulfuron-resistant weeds, interaction with tolpyralate becomes antagonistic even in the conditions of increased rate of application of rimsulfuron, and thus the effectiveness of the protection significantly decreases. At the same time, after applying tank mixture of tolpyralate with terbuthylazine, the synergistic character of the interaction was maintained toward a broad range of species of grass and dicotyledonous weeds, providing high efficiency of maize crop protection. The herbicide compositions that were analyzed and are presented in the article allow one to decrease the possibility of emergence of resistant biotypes of weeds, and also to effectively control the already existing resistant biotypes.


Abendroth, J. A., Martin, A. R., & Roeth, F. W. (2006). Plant response to combinations of mesotrione and photosystem II inhibitors. Weed Technology, 20(1), 267–274.

Armel, G. R., Hall, G. J., Wilson, H. P., & Cullen, N. (2005). Mesotrione plus atrazine mixtures for control of Canada thistle (Cirsium arvense). Weed Science, 53(2), 202–211.

Armel, G. R., Wilson, H. P., Richardson, R. J., Whaley, C. M., & Hines, T. E. (2008). Mesotrione combinations with atrazine and bentazon for yellow and purple nutsedge (Cyperus esculentus and C. rotundus) control in corn. Weed Technology, 22(3), 391–396.

Barrett, M., Ervin, D. E., Frisvold, G. B., Jussaume, R. A., Shaw, D. R., & Ward, S. M. (2017). A wicked view. Weed Science, 65(4), 441–443.

Beckie, H. (2006). Herbicide-resistant weeds: Management tactics and practices. Weed Technology, 20(3), 793–814.

Chen, S., & Dickman, M. B. (2004). Bcl-2 family members localize to tobacco chloroplasts and inhibit programmed cell death induced by chloroplast-targeted herbicides. Journal of Experimental Botany, 55(408), 2617–2623.

Choe, E., Williams, M. M., Boydston, R. A., Huber, J. L., Huber, S. C., & Pataky, J. K. (2014). Photosystem II‐inhibitors play a limited role in sweet corn response to 4‐hydroxyphenyl pyruvate dioxygenase‐inhibiting herbicides. Agronomy Journal, 106(4), 1317–1323.

Colby, S. R. (1967). Calculating synergistic and antagonistic responses of herbicide combinations. Weeds, 15(1), 20–22.

Dayan, F. E., & Zaccaro, M. L. de M. (2012). Chlorophyll fluorescence as a marker for herbicide mechanisms of action. Pesticide Biochemistry and Physiology, 102(3), 189–197.

Diggle, A. J., Neve, P. B., & Smith, F. P. (2003). Herbicides used in combination can reduce the probability of herbicide resistance in finite weed populations. Weed Research, 43(5), 371–382.

Duke, S. O. (2012). Why have no new herbicide modes of action appeared in recent years? Pest Management Science, 68(4), 505–512.

Duke, S. O., Stidham, M. A., & Dayan, F. E. (2019). A novel genomic approach to herbicide and herbicide mode of action discovery. Pest Management Science, 75(2), 314–317.

Duus, J., Kruse, N. D., & Streibig, J. C. (2018). Effect of mesotrione and nicosulfuron mixtures with or without adjuvants. Planta Daninha, 2018, 36.

Graham, M. Y. (2005). The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiology, 139(4), 1784–1794.

Harker, K. N., Mallory-Smith, C., Maxwell, B. D., Mortensen, D. A., & Smith, R. G. (2017). Another view. Weed Science, 65(2), 203–205.

Hess, F. D. (2000). Light-dependent herbicides: An overview. Weed Science, 48(2), 160–170.

Ivashchenko, O. O., & Merezhynsky, Y. G. (2001). Metodyky vyprobuvannia ahrokhimikativ [Test methods for agrochemists]. In: Trybel’, S. O. (Ed.). Herbitsydy i desykanty. Metodyky vyprobuvannia i zastosuvannia pestytsydiv [Herbicides and desiccants. Test methods and preparation of pesticides]. World, Kyiv (in Ukrainian).

Kikugawa, H., Satake, Y., Tonks, D. J., Grove, M., Nagayama, S., & Tsukamoto, M. (2015). Tolpyralate: New post-emergence herbicide for weed control in corn. In: Proceedings of the 55th Annual Meeting of the Weed Science Society of America. Weed Science Society of America, Lexington. P. 275.

Kozak, V. M., Romanenko, E. R., & Brygadyrenko, V. V. (2020). Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosystems Diversity, 28(3), 272–280.

Kraehmer, H., Almsick, A., Beffa, R., Dietrich, H., Eckes, P., Hacker, E., Hain, R., Strek, H. J., Stuebler, H., & Willms, L. (2014). Herbicides as weed control agents: State of the art: II. Recent achievements. Plant Physiology, 166(3), 1132–1148.

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence: A practical guide. Journal of Experimental Botany, 51(345), 659–668.

Metzger, B. A., Soltani, N., Raeder, A. J., Hooker, D. C., Robinson, D. E., & Sikkema, P. H. (2018). Tolpyralate efficacy: Part 1. Biologically effective dose of tolpyralate for control of annual grass and broadleaf weeds in corn. Weed Technology, 32(6), 698–706.

Metzger, B. A., Soltani, N., Raeder, A. J., Hooker, D. C., Robinson, D. E., & Sikkema, P. H. (2019). Effect of hybrid varieties, application timing, and herbicide rate on field corn tolerance to tolpyralate plus atrazine. Weed Science, 67(5), 475–484.

Morderer, Y. Y., & Merezhynsky, Y. G. (2009). Herbitsydy. Mekhanizmy diji ta praktyka [Herbicides. Mechanisms of action and practice]. Logos, Kyiv (in Ukrainian).

Morderer, Y. Y., Radchenko, M. P., & Sychuk, A. M. (2013). Prohramovana zahybel’ klityn pry patohenezi, indukovanomu v roslynakh herbitsydamy [Programmed cell death in pathogenesis induced in plants by herbicides]. Plant Physiology and Genetics, 45(6), 517–526 (in Ukrainian).

Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvoid, G., Powles, S. B., Burgos, N. R., Witt, W. W., & Barrett, M. (2012). Reducing the risks of herbicide resistance: Best management practices and recommendations. Weed Science, 60(SP1), 31–62.

O’Brien, S. R., Davis, A. S., & Riechers, D. E. (2018). Quantifying resistance to isoxaflutole and mesotrione and investigating their interactions with metribuzin post in waterhemp (Amaranthus tuberculatus). Weed Science, 66(5), 586–594.

Osipitan, O. A., Scott, J. E., & Knezevic, S. Z. (2018). Tolpyralate applied alone and with atrazine for weed control in corn. The Journal of Agricultural Science, 10(10), 32–39.

Powles, S. B., & Yu, Q. (2010). Evolution in action: Plants resistant to herbicides. Annual Review of Plant Biology, 61, 317–347.

Rüegg, W. T., Quadranti, M., & Zoschke, A. (2007). Herbicide research and development: Challenges and opportunities. Weed Research, 47(4), 271–275.

Schuster, C. L., Al-Khatib, K., & Dille, J. A. (2008). Efficacy of sulfonylurea herbicides when tank mixed with mesotrione. Weed Technology, 22(2), 222–230.

Shaw, D. R. (2016). The “wicked” nature of the herbicide resistance problem. Weed Science, 64(S1), 552–558.

Sherwani, S. I., Arif, I. A., & Khan, H. A. (2015). Modes of action of different classes of herbicides. Herbicides, Physiology of Action, and Safety, 2015, 165–186.

Shornynh, B. Y., Smyrnova, E. H., Yahuzhynskyi, L. S., & Vaniushyn, B. F. (2000). Neobkhodimost’ obrazovanija superoksida dlia razvitija etiolirovannykh prorostkov pshenitsy [Necessity for superoxide formation for the development of etiolated wheat seedlings. Biochemistry]. Byokhimija, 65(12), 1612–1618 (in Russian).

Silva, F. B., Costa, A. C., Pereira Alves, R. R., & Megguer, C. A. (2014). Chlorophyll fluorescence as an indicator of cellular damage by glyphosate herbicide in Raphanus sativus L. plants. American Journal of Plant Sciences, 5(16), 265.

Tkalich, Y. I., Tsyliuryk, O. І., Rudakov, Y. M., & Kozechko, V. І. (2021). Efficiency of post-emergence (“insurance”) herbicides in soybean crops of the Northern Steppe of Ukraine. Agrology, 4(4), 165–173.

Tonks, D., Grove, M., Kikugawa, H., Parks, M., Nagayama, S., & Tsukamoto, M. (2015). Tolpyralate: An overview of performance for weed control in US corn. In: Proceedings of the 55th Annual Meeting of the Weed Science Society of America. Weed Science Society of America, Lexington. Abstract 276.

Tsyliuryk, O. I., Tkalich, Y. I., Honchar, N. V., & Kozechko, V. I. (2021). Effectiveness of soil-applied and post-emergence herbicides in crops of scarlet grosbeak (Erythrina erythrina) of the Northern Steppe of Ukraine. Agrology, 4(2), 85–92.

Vencill, W. K., Nichols, R. L., Webster, T. M., Soteres, J. K., Mallory-Smith, C., Burgos, N. R., Johnson, W. G., & McClelland, M. R. (2012). Herbicide resistance: Toward an understanding of resistance development and the impact of herbicide-resistant crops. Weed Science, 60(SP1), 2–30.

Walsh, M. J., Stratford, K., Stone, K., & Powles, S. B. (2012). Synergistic effects of atrazine and mesotrione on susceptible and resistant wild radish (Raphanus raphanistrum) populations and the potential for overcoming resistance to triazine herbicides. Weed Technology, 26(2), 341–347.

Weber, J. F., Kunz, C., Peteinatos, G. G., Santel, H. J., & Gerhards, R. (2017). Utilization of chlorophyll fluorescence imaging technology to detect plant injury by herbicides in sugar beet and soybean. Weed Technology, 31(4), 523–535.

Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313.

Willemse, C., Soltani, N., Benoit, L., Jhala, A. J., Hooker, D. C., Robinson, D. E., & Sikkema, P. H. (2021). Is there a benefit of adding atrazine to HPPD-inhibiting herbicides for control of multiple-herbicide-resistant, including group 5-resistant, waterhemp in corn? Journal of Agricultural Science, 13(7), 21–31.

Willemse, C., Soltani, N., Metzger, B., Hooker, D. C., Jhala, A. J., Robinson, D. E., & Sikkema, P. H. (2021). Biologically-effective-dose of tolpyralate and tolpyralate plus atrazine for control of multiple-herbicide-resistant waterhemp [Amaranthus tuberculatus (Moq.) JD Sauer] in corn. Agricultural Sciences, 12(4), 424.

Willis, J. B., Askew, S. D., & McElroy, J. S. (2007). Improved white clover control with mesotrione by tank-mixing bromoxynil, carfentrazone, and simazine. Weed Technology, 21(3), 739–743.

How to Cite
Yukhymuk, V. V., Radchenko, M. P., Sytnik, S. K., & Morderer, Y. Y. (2022). Effects of interaction and effectiveness of weed control when using tank mixtures of herbicides in maize crops . Regulatory Mechanisms in Biosystems, 13(2), 114-120. https://doi.org/10.15421/022216