Influence of winter water temperatures on the physiological state of carp (Cyprinus carpio)

  • L. V. Tsurkan Kherson State Agrarian and Economic University
Keywords: starvation, energy reserves, blood serum, biochemical profile, hematological profile, erythrocytes

Abstract

In the winter period, water temperature is one of the main factors influencing the physiological state of fish. Its optimal and stable indicator during the whole winter period guarantees high yield of fish and its quality. To this date, the winter period is characterized by elevated temperatures with acute fluctuations. In this work, the main object of study is carp (Cyprinus carpio) at the age of six (young-of-the-year) and ten (one-year) months. The aim of this study was to determine how much the period of the optimal winter water temperatures decreased and how this affected the weight and fatness, hematological profiles, erythrocyte indices and basic biochemical parameters of carp muscle tissue. As a result of research, it was found that optimal winter water temperatures decreased by an average of two months, which affected the physiological state of carp. Consequently, there was a decrease in body weight and fatness. Dissolved oxygen level, pH, nitrites, nitrates and hardness were normal, while oxidation was increased. Muscle fat and protein levels decreased to critical levels, at the same time, moisture and ash levels were noted to increase. The total content of red blood cells decreased, however, the level of hemoglobin, mean corpuscular hemoglobin (MCH), mean cell hemoglobin concentration (MCHC) increased. With increasing hemoglobin content and concentration, mean corpuscular volume (MCV) decreased. After wintering, the number of white blood cells increased. The biochemical profile of carp blood showed a decrease in total protein in blood serum, albumin, triglycerides, cholesterol and glucose. After wintering, there was an increase in creatinine, phosphorus and calcium. Knowing how much the period of optimal winter temperatures has shortened, and how this affects the state of carp at the physiological level, will provide an opportunity to develop recommendations for improving wintering technologies. Considering the dynamics of climate change, the research in this area is promising.

References

Aidos, L., Cafiso, A., Bertotto, D., Bazzocchi, C., Radaelli, G., & Di Giancamillo, A. (2020). How different rearing temperatures affect growth and stress status of Siberian sturgeon Acipenser baerii larvae. Journal of Fish Biology, 96(4), 913–924.

Angiulli, E., Pagliara, V., Cioni, C., Frabetti, F., Pizzetti, F., Alleva, E., & Toni, M. (2020). Increase in environmental temperature affects exploratory behaviour, anxiety and social preference in Danio rerio. Scientific Reports, 10(1), 5385.

Ashley, P. J. (2007). Fish welfare: Current issues in aquaculture. Applied Animal Behaviour Science, 104, 199–235.

Aslamov, I. A., Kozlov, V. V., Kirillin, G. B., Mizandrontsev, I. B., Kucher, K. M., Makarov, M. M., & Granin, N. G. (2014). Ice-water heat exchange during ice growth in Lake Baikal. Journal of Great Lakes Research, 40(3), 599–607.

Bar, N. (2014). Physiological and hormonal changes during prolonged starvation in fish. Canadian Journal of Fisheries and Aquatic Sciences, 71(10), 1447–1458.

Bar, N., & Volkoff, H. (2012). Adaptation of the physiological, endocrine, and digestive system functions to prolonged food deprivation in fish. In: McCue, M. (Ed.). Comparative physiology of fasting, starvation, and food limitation. Springer, Berlin, Heidelberg.

Bardin, M. J., Ran’kova, J. J., Platova, T. V., Samohina, O. F., Sidorenkov, N. S., Golubev, A. D., Borshh, S. V., Zhemchugova, T. R., Treshhilo, L. I., Komarovskaja, E. V., Dolgih, S. A., Smirnova, E. J., Beldeubaev, E. E., Hudjakova, T. V., Zhanibekuly, D., Kretova, Z. A., Zautseva, I. B., & Petrosjan, Z. (2020). Svodnoe ezhegodnoe soobshchenie o sostoyanii i izmenenii klimata na territoriyakh gosudarstv-uchastnikov SNG za 2019 god [Consolidated annual report on the state and climate change in the territories of the CIS member states for 2019]. The North EurAsia Climate Centre, Moscow (in Russian).

Barton, B. A. (2002). Stress in fishes: A diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology, 42(3), 517–525.

Battisti, E. K., Rabaioli, A., Uczay, J., Sutili, F. J., & Lazzari, R. (2020). Effect of stocking density on growth, hematological and biochemical parameters and antioxidant status of silver catfish (Rhamdia quelen) cultured in a biofloc system. Aquaculture, 524, 735213.

Bessonov, N. M., & Privezentsev, Y. A. (1987). Rybohozjajstvennaja gidrohimija [Fishery hydrochemistry]. Agropromizdat, Moscow (in Russian).

Biktasheva, F. H. (2010). Biohimicheskie pokazateli krovi ryb ozera Аsylykul’ (Rossija, Respublika Bashkortostan) [Blood biochemical parameters of fish from lake Asylykul (Russia, Republic of Bashkortostan)]. International Journal of Applied and Fundamental Research, 9, 107–108 (in Russian).

Boychenko, S., Voloshchuk, V., Movchan, Y., Serdjuchenko, N., Tkachenko, V., Tyshchenko, O., & Savchenko, S. (2016). Features of climate change on Ukraine: Scenarios, consequences for nature and agroecosystems. Proceedings of the National Aviation University, 69(4), 96–113.

Boyd, C. (2012). Water quality. In: Lucas, J. S., & Southgate, P. C. (Eds.). Aquaculture: Farming aquatic animals and plants. Wiley-Blackwell, Oxford. Pp. 52–83.

Cargnelli, L. M., & Gross, M. R. (1997). Notes: Fish energetics: Larger individuals emerge from winter in better condition. Transactions of the American Fisheries Society, 126(1), 153–156.

Christensen, E. A. F., Norin, T., Tabak, I., van Deurs, M., & Behrens, J. W. (2021). Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. Journal of Experimental Biology, 224(1), jeb237669.

Chung, M., Jorgensen, K. M., Trueman, C. N., Knutsen, H., Jorde, P. E., & Gronkjær, P. (2021). First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes. Oikos, 130(2), 287–299.

Claver, J. A., & Quaglia, A. I. E. (2009). Comparative morphology, development, and function of blood cells in no mammalian vertebrates. Topics in Medicine and Surgery, 18, 87–97.

Correia, D., David, L. H. C., Pinho, S. M., Costa-Filho, J., Emerenciano, M. G. C., & de Mello, G. L. (2018). Performance of fat snook juveniles reared at different temperatures. Acta Scientiarum, Animal Sciences, 40(1), e39766.

Cortès, M., Turco, M., Ward, P., Sánchez-Espigares, J. A., Alfieri, L., & Carmen Llasat, M. (2019). Changes in flood damage with global warming on the eastern coast of Spain. Natural Hazards and Earth System Sciences, 19(12), 2855–2877.

Da Costa, O. T. F., Dias, L. C., Malmann, C. S. Y., Ferreira, C. A. L., Carmo, I. C., Wischneski, A. G., Souza, R. L., Cavaiero, B. A. S., Lameiras, J. L. V., & Santos, M. C. (2019). The effects of stocking density on the hematology, plasma protein profile and immunoglobulin production of juvenile tambaqui (Colossoma macropomum) farmed in Brazil. Aquaculture, 499, 260–268.

Dai, W., Wang, X., Guo, Y., Wang, Q., & Ma, J. (2011). Growth performance, hematological and biochemical responses of African catfish (Clarias gariepinus) reared at different stocking densities. African Journal of Agricultural Research, 6, 6177–6182.

De Smet, H., & Blust, R. (2001). Stress responses and changes in protein-metabolism in carp Cyprinus carpio during cadmium exposure. Ecotoxicology and Environmental Safety, 48(3), 255–262.

Emil, A. F. C., Tommy, N., Iren, T., Mikael, D., & Jane, W. B. (2021). Effects of temperature on physiological performance and behavioral thermoregulation in an invasive fish, the round goby. Experimental Biology, 224(1), jeb237669.

Fang, J., Tian, X., & Dong, S. (2010). The influence of water temperature and ration on the growth, body composition and energy budget of tongue sole (Cynoglossus semilaevis). Aquaculture, 299, 106–114.

Fulton, T. W. (1902). The rate of growth of fishes. Annual report of the Fishery Board for Scotland, 3, 326–446.

Gosselin, J. L., & Anderson, J. J. (2020). Step-patterned survivorship curves: Mortality and loss of equilibrium responses to high temperature and food restriction in juvenile rainbow trout (Oncorhynchus mykiss). PLoS One, 15(5), e0233699.

Grant, K. R. (2015). Fish hematology and associated disorders. Exotic Animal Practice, 18(1), 83–103.

Harmon, T. S. (2009). Methods for reducing stressors and maintaining water quality associated with live fish transport in tanks: A review of the basics. Reviews in Aquaculture, 1, 58–66.

Hassan, S. M., Rashid, M. S., Muhaimeed, A. R., Madlul, N. S., Al-Katib, M. U., & Sulaiman, M. A. (2022). Effect of new filtration medias on water quality, biomass, blood parameters and plasma biochemistry of common carp (Cyprinus carpio) in RAS. Aquaculture, 548(1), 737630.

Havird, J. C., Neuwald, J. L., Shah, A. A., Mauro, A., Marshall, C. A., & Ghalambor, C. K. (2020). Distinguishing between active plasticity due to thermal acclimation and passive plasticity due to Q10 effects: Why methodology matters. Functional Ecology, 34(5), 1015–1028.

Hébert, I., & Dunlop, E. S. (2020). Temperature response in the physiology and growth of lake trout strains stocked in the Laurentian Great Lakes. Journal of Great Lakes Research, 46(2), 366–375.

Hemingway, R. J., & Scarnecchia, D. L. (2018). Lipid acquisition and retention in tissues of spawning adult paddlefish Polyodon spathula (Walbaum, 1792) in relation to extended and compressed life history patterns in two river-reservoir systems. Journal of Applied Ichthyology, 34(1), 42–48.

Huang, W., Zhang, J., Leppäranta, M., Li, Z., Cheng, B., & Lin, Z. (2019). Thermal structure and water-ice heat transfer in a shallow ice-covered thermokarst lake in central Qinghai-Tibet Plateau. Journal of Hydrology, 578, 124122.

Islam, M. J., Slater, M. J., & Kunzmann, A. (2020). What metabolic, osmotic and molecular stress responses tell us about extreme ambient heatwave impacts in fish at low salinities: the case of European seabass, Dicentrarchus labrax. Science of the Total Environment, 749, 141458.

Jo, S., Ahn, J. B., Cha, D. H., Min, S. K., Suh, M. S., Byun, Y. H., & Kim, J. U. (2019). The Köppen-Trewartha climate-type changes over the CORDEX-East Asia phase 2 domain under 2 and 3 °C global warming. Geophysical Research Letters, 46(23), 14030–14041.

Khalko, V., & Sherysheva, N. (2018). Changes in lipid composition in Amur sleeper Percottus glenii (Dybowski, 1877) yearlings depending on body length in the floodplain lake Krugloye (Saratov reservoir). Inland Water Biology, 11(3), 344–348.

Kozlov, V. I. (1998). Spravochnik fermera-rybovoda [A farmer-fish breeder’s guide]. VNIRO Publishing House, Moscow (in Russian).

Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfield, T. (2018). Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. World Meteorological Organization Technical Document, Geneva, Switzerland.

Nikolaenko, O. A., Shokina, J. V., & Volchenko, V. I. (2011). Metody issledovanija ryby i rybnyh produktov [Research methods of fish and fish products]. Giord, Saint-Petersburg (in Russian).

Noga, E. J. (2010). Fish disease, diagnostic and treatment. Wiley-Blackwell, New Jersey.

Nordahl, O., Koch-Schmidt, P., Tibblin, P., Forsman, A., & Larsson, P. (2020). Vertical movements of coastal pike (Esox lucius) on the role of sun basking. Ecology of Freshwater Fish, 29(1), 18–30.

Paredes-López, D., Robles-Huaynate, R., Rebaza-Alfaro, C., Delgado-Ramírez, J., & Aldava-Pardave, U. (2021). Effect of stocking density of juvenile Arapaima gigas on rearing water quality hematological and biochemical profile, and productive performance. Latin American Journal of Aquatic Research, 49(2), 193–201.

Pilakouta, N., Killen, S. S., Kristjánsson, B. K., Skúlason, S., Lindström, J., Metcalfe, N. B., & Parsons, K. J. (2020). Multigenerational exposure to elevated temperatures leads to a reduction in standard metabolic rate in the wild. Functional Ecology, 34(6), 1205–1214.

Pinho, S., Brol, J., Jacques de Almeida, E., Lemos de Mello, G., Jeronimo, G. T., & Cohelo-Emerenciano, M. G. (2016). Effect of stocking density and vertical substrate addition on growth, performance, and health status of fat snook Centropomus parallelus. Aquaculture, 457, 73–78.

Pravdin, I. F. (1966). Rukovodstvo po izucheniju ryb (preimushhestvenno presnovodnyh) [Guide to the study of fish (mainly freshwater)]. Food Industry, Moscow (in Russian).

Sakovskaja, V. G., Voroshilina, Z. P., & Syrov, V. S. (1991). Praktikum po prudovomu rybovodstvu [Workshop on pond fish farming]. Agropromizdat, Moscow (in Russian).

Samour, J., Silvanose, C., & Pendl, H. (2016). Clinical and diagnostic procedures. In: Samour, J. (Ed.). Avian medicine. Third edition. Mosby. Pp. 73–178.

Shumak, V. V. (2016). Poteri massy i jenergii zimujushhim segoletkom raznyh porod karpa [Loss of mass and energy among wintering fingerlings of different carp breeds]. News of the Kaliningrad State Technical University, (41), 68–78 (in Russian).

Stocker, T. F. D., Qin, G. K., Plattner, M., Tignor, S. K., Allen, J., Boschung, A., Nauels, Y., Xia, V. B., & Midgley, P. M. (2013). The physical science basis. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York.

Takegaki, T., & Takeshita, F. (2020). Winter mortality of young mudskipper fish: Effects of size, temperature and energy depletion. Journal of Experimental Marine Biology and Ecology, 530–531, 151436.

Tovstik, V. F. (1965). Ves i upitannost’ kak pokazateli biologicheskogo obosnovanija standarta posadochnogo materiala karpa [Weight and body condition as indicators of biological justification for the standard of carp planting material]. Kharkiv Zooveterinary Institute, Kharkiv (in Russian).

Tsurkan, L. V. (2021). Analіz suchasnyh gіdrologіchnyh umov zymіvlі ciogolіtkіv koropovyh ryb [Analysis of modern hydrological conditions of wintering of these carp fish]. Water Bioresources and Aquaculture, 1(9), 114–126 (in Ukrainian).

Tsurkan, L. V., Volichenko, Y. M., & Sherman, I. M. (2018). Osoblyvostі zymіvlі ciogolіtkіv koropa v umovah pіvdnia Ukrajiny [Features of wintering of carp thistles in the conditions in the South of Ukraine]. Taurian Science Newsletter, 100(2), 331–336 (in Ukrainian).

Tsurkan, L. V., Volichenko, Y. M., & Sherman, I. M. (2020). Fyzyologo-byohymycheskye pokazately gybryda belogo y pestrogo tolstolobykov v peryod zymnego soderzhanyja [Physiological and biochemical indicators of hybrid of white and mirrid harbor in the period of winter content]. Colloquium, 17(69), 29–32 (in Russian).

Volkoff, H., & Rønnestad, I. (2020). Effects of temperature on feeding and digestive processes in fish. Temperature, 7(4), 307–320.

Wedemeyer, G. (1996). Physiology of fish in intensive culture systems. Chapman and Hall, New York.

Wurts, W. (1995). Using salt to reduce handling stress in channel catfish. World Aquaculture, 26(3), 80–81.

Zhu, Y., Tian, F. B., Young, J., Liao, J. C., & Lai, J. C. S. (2021). A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary – lattice Boltzmann method. Scientific Reports, 11(1), 1691.

Published
2022-02-07
How to Cite
Tsurkan , L. V. (2022). Influence of winter water temperatures on the physiological state of carp (Cyprinus carpio). Regulatory Mechanisms in Biosystems, 13(1), 85-90. https://doi.org/10.15421/022212