Bactericidal efficiency of preparation based on essential oils used in aerosol disinfection in the presence of poultry

  • G. V. Ponomarenko Kharkiv State Zooveterinary Academy
  • V. L. Kovalenko State Scientific Control Institute of Biotechnology and Strains of Microorganisms
  • Y. O. Balatskiy Bila Tserkva National Agrarian University
  • O. V. Ponomarenko Kharkiv State Zooveterinary Academy
  • A. P. Paliy National Scientific Center “Institute of Experimental and Clinical Veterinary Medicine”
  • S. V. Shulyak State Scientific and Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
Keywords: essential oils; aerosol disinfection; broiler chickens; indoor air

Abstract

A disinfectant was created for aerosol disinfection of premises in the presence of poultry, which will help reduce microbial contamination of premises, increase survival, weight of poultry and economic efficiency of meat production in general. The preparation based on essential oils can be used for disinfection in the presence of poultry and at the same time exhibits a therapeutic and prophylactic effect on respiratory infections. This disinfectant has a colloidal solution of silver (Ag), benzalkonium chloride and essential oils of thyme, fir and eucalyptus. The preparation based on essential oils contains (per 100 g): benzalkonium chloride – 16.0 g; thyme oil – up to 2.0 g; eucalyptus oil – up to 2.0 g; fir oil – up to 2.0 g; colloidal solution of silver (Ag) – 20–30 mg; distilled water - up to 100 cm3. Aerosol sanitation of indoor air was carried out with 0.3% solution of preparation in the period before housing poultry and once a day from the 20th to the 35th day of growing broilers with aerosol cold mist generator Dyna-Fog Tornado (model 2897, construction type – ULV-electric spray gnerator, manufacturer – Curtis Dyna-Fog, Ltd., USA) at a dose of 50.0 cm3 per 1 m3 at an exposure of 60 minutes. The size of the aerosol particles is 20 μm. On days 1, 4, 8, 11, 15, 28, 37, and 42, the chickens were weighed, and the blood was taken for examination. Blood was examined to study the number of red blood cells, hemoglobin content, the bactericidal activity of blood serum, phagocyte activity of leukocytes, lysozyme activity of blood serum. According to the results of the research, the technological modes of air disinfection of poultry premises in the presence of broiler chickens were substantiated during the use of preparation, which contains nanoparticles (NP) of silver, benzalkonium chloride and essential oils. The optimal mode of aerosol treatment of poultry houses using a 0.3% solution preparation based on essential oils is 50 mL/m3 of a room with a 60-minute exposure. The use of air disinfection in the presence of chickens during broiler rearing and one treatment per day from 20 to 35 days of the chickens’ growth reduced the microbial pollution of indoor air. Thus, the concentration of microbial cells in the room where the chickens were kept was 230.2 ± 15.6 thousand microbial cell/m3. Sixty minutes after disinfection, the concentration decreased to 1.4 ± 0.4 thousand microbial cell/m3. In addition, the bodyweight of chickens at 6 weeks increased by 449.4 ± 16.3 g (15.9%) compared with the controls. The method and mode of air treatment did not adversely affect the development of the internal organs of the poultry and their physiological state, which is confirmed by studies of the morphological parameters of the chicken blood. The data obtained indicate a positive effect of the developed methods and modes of aerosol air treatment with the preparation based on essential oils on the growth and development of broilers.

References

Addie, D. D., Boucraut-Baralon, C., Egberink, H., Frymus, T., Gruffydd-Jones, T., Hartmann, K., Horzinek, M. C., Hosie, M. J., Lloret, A., Lutz, H., Marsilio, F., Pennisi, M. G., Radford, A. D., Thiry, E., Truyen, U., & Möstl, K. (2015). European advisory board on cat diseases. Disinfectant choices in veterinary practices, shelters and households: ABCD guidelines on safe and effective disinfection for feline environments. Journal of Feline Medicine and Surgery, 17(7), 594–605.

Alvarez, J., Lopez, G., Muellner, P., de Frutos, C., Ahlstrom, C., Serrano, T., Moreno, M. A., Duran, M., Saez, J. L., Dominguez, L., & Ugarte-Ruiz, M. (2020). Identifying emerging trends in antimicrobial resistance using Salmonella surveillance data in poultry in Spain. Transboundary and Emerging Diseases, 67(1), 250–262.

Baranowska, M., Chojnowski, W., & Nowak, H. (2014). Disinfection in diaryplants. Engineering Sciences and Technologies, 4(15), 9–22.

Ben Sassi, N., Averós, X., & Estevez, I. (2016). Technology and poultry welfare. Animals, 6(10), 62.

Biesek, J., Kuźniacka, J., Banaszak, M., Kaczmarek, S., Adamski, M., Rutkowski, A., Zmudzińska, A., Perz, K., & Hejdysz, M. (2020). Growth performance and carcass quality in broiler chickens fed on legume seeds and rapeseed meal. Animals, 10(5), 846.

Borges, C. A., Tarlton, N. J., & Riley, L. W. (2019). Escherichia coli from commercial broiler and backyard chickens share sequence types, antimicrobial resistance profiles, and resistance genes with human extraintestinal pathogenic Escherichia coli. Foodborne Pathogens and Disease, 16(12), 813–822.

Boyko, O., & Brygadyrenko, V. (2021). Nematicidal activity of essential oils of medicinal plants. Folia Oecologica, 48(1), 42–48.

Boyko, O., Shendryk, L., Shaban, O., & Brygadyrenko, V. (2021). Influence of essential oils on sporulation of Eimeria magna oocysts. Annals of Parasitology, 67(1), 11–17.

Buckmaster, C. (2012). Shifting the culture of lab animal care. Lab Animal, 41(7), 205.

Carvalho, M. R. A., dos Santos da Silva, M. A., de Sousa Brito, C. A. R., Campelo, V., Kuga, M. C., Tonetto, M. R., De Jesus Tavarez, R. R., Bandéca, M. C., & Pinzan-Vercelino, C. R. M. (2015). Comparison of antimicrobial activity between chemical disinfectants on contaminated orthodontic pliers. The Journal of Contemporary Dental Practice, 16(8), 619–623.

Chaidez, C., Lopez, J., & Castro-Del Campo, N. (2007). Quaternary ammonium compounds: An alternativedisinfection method for fresh produce wash water. Journal of Water and Health, 5(2), 329–333.

Chinivasagam, H. N., Tran, T., Maddock, L., Gale, A., & Blackall, P. J. (2009). Mechanically ventilated broiler sheds: A possible source of aerosolized Salmonella, Campylobacter, and Escherichia coli. Applied and Environmental Microbiology, 75(23), 7417–7425.

Coriolano, D., de Souza, J., Bueno, E., Medeiros, S., Cavalcanti, I. D., & Cavalcanti, I. M. (2021). Antibacterial and antibiofilm potential of silver nanoparticles against antibiotic-sensitive and multidrug-resistant Pseudomonas aeruginosa strains. Brazilian Journal of Microbiology, 52(1), 267–278.

Das, S., Gazdag, Z., Szente, L., Meggyes, M., Horváth, G., Lemli, B., Kunsági-Máté, S., Kuzma, M., & Kőszegi, T. (2019). Antioxidant and antimicrobial properties of randomly methylated β cyclodextrin – captured essential oils. Food Chemistry, 278, 305–313.

Diadychkyna, L. F. (2011). Veterinarno-profilakticheskiye meropriyatiya v inkubatorii [Veterinary preventive measures in the hatchery]. Poultry Farm, 4, 32–36 (in Russian).

Diaz, D., Church, J., Young, M., Kim, K. T., Park, J., Hwang, Y. B., Swadeshmukul, S., & Lee, W. H. (2019). Silica-quaternary ammonium “Fixed-Quat” nanofilm coated fiberglass mesh for water disinfection and harmful algal blooms control. Journal of Environmental Sciences, 82, 213–224.

Ding, S., Deng, Y., Bond, T., Fang, C., Cao, Z., & Chu, W. (2019). Disinfection byproduct formation during drinking water treatment and distribution: A review of unintended effects of engineering agents and materials. Water Research, 160, 313–329.

Dorozhkin, V. I., Prokopenko, A. A., Morozov, V. J., & Dronfort, M. I. (2017). Preparaty dlja dezinfekcii obektov veterinarnogo nadzora [Preparations for disinfection of objects of veterinary supervision]. Pticevodstvo, 5, 50–53 (in Russian).

Durán, N., Durán, M., de Jesus, M., Seabra, A., Fávaro, W., & Nakazato, G. (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine, 12(3), 789–799.

Falleh, H., Jemaa, M., Saada, M., & Ksouri, R. (2020). Essential oils: A promising eco-friendly food preservative. Food Chemistry, 330, 127268.

Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of Biomedical Materials Research, 52(4), 662–668.

Fewtrell, L., Majuru, B., & Hunter, P. R. (2017). A re-assessment of the safety of silver in household water treatment: Rapid systematic review of mammalian in vivo genotoxicity studies. Environmental Health, 16, 66.

Fyhrquist, P., Virjamo, V., Hiltunen, E., & Julkunen-Tiitto, R. (2017). Epidihydropinidine, the main piperidine alkaloid compound of Norway spruce (Picea abies) shows promising antibacterial and anti-Candida activity. Fitoterapia, 117, 138–146.

Haapakorva, E., Holmbom, T., & von Wright, A. (2018). Novel aqueous oil-in-water emulsions containing extracts of natural coniferous resins are strongly antimicrobial against enterobacteria, staphylococci and yeasts, as well as on bacterial biofilms. Journal of Applied Microbiology, 124(1), 136–143.

Hatchett, D. W., & White, H. S. (1996). Electrochemistry of sulfur ad layers on low-index faces of silver. The Journal of Physical Chemistry, 100(23), 9854–9859.

Ibragimov, A. A. (2007). Patomorfologija i diagnostika boleznej ptic: Atlas [Pathomorphology and diagnosis of avian diseases: Atlas]. Kolos, Moskov (in Russian).

Ipe, D., Kumar, S., Love, R., & Hamlet, S. (2020). Silver nanoparticles at biocompatible dosage synergistically increases bacterial susceptibility to antibiotics. Frontiers in Microbiology, 11, 1074.

Ito, M., Alam, M. S., Suzuki, M., Takahashi, S., Komura, M., Sangsriratakul, N., Shoham, D., & Takehara, K. (2018). Virucidal activity of a quaternary ammonium compound associated with calcium hydroxide on avian influenza virus, Newcastle disease virus and infectious bursal disease virus. The Journal of Veterinary Medical Science, 80(4), 574–577.

Jiang, L., Li, M., Tang, J., Zhao, X., Zhang, J., Zhu, H., Yu, X., Li, Y., Feng, T., & Zhang, X. (2018). Effect of different disinfectants on bacterial aerosol diversity in poultry houses. Frontiers in Microbiology, 9, 2113.

Just, N., Kirychuk, S., Gilbert, Y., Letourneau, V., Veillette, M., Singh, B., & Duchaine, C. (2011). Bacterial diversity characterization of bioaerosols from cage-housed and floor-housed poultry operations. Environmental Research, 111(4), 492–498.

Khan, A., Hussain, S. M., & Khan, M. Z. (2006). Effects of formalin feeding or administering into the crops of white leghorn cockerels on hematological and biochemical parameters. Poultry Science, 85(9), 1513–1519.

Kim, H. R., Hwang, G. W., Naganuma, A., & Chung, K. H. (2016). Adverse health effects of humidifier disinfectants in Korea: Lung toxicity of polyhexamethylene guanidine phosphate. The Journal of Toxicological Sciences, 41(6), 711–717.

Kim, H. S., & Park, H. D. (2013). Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One, 8(9), e76106.

Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Hwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 3(1), 95–101.

Köhler, A. T., Rodloff, A. C., Labahn, M., Reinhardt, M., Truyen, U., & Speck, S. (2019). Evaluation of disinfectant efficacy against multidrug-resistant bacteria: A comprehensive analysis of different methods. American Journal of Infection Control, 47(10), 1181–1187.

Kotsiumbas, I. Y., Malik, O. G., & Paterega, I. P. (2006). Doklinicheskiye issledovaniya veterinarnykh preparatov [Preclinical studies of veterinary drugs]. Triada Plus, Lviv (in Ukrainian).

Kovalenko, V. L., Jakubchak, O. N., Jashhenko, M. F., Tjutjun, A. I., & Adamenko, L. V. (2011). Sanitarno-mikrobiologicheskij kontrol’ vozduha ob’ektov veterinarno-sanitarnogo nadzora i kontrolja [Sanitary and microbiological control of objects of veterinary and sanitary supervision and control]. Guidelines, Kiev (in Ukrainian).

Kovalenko, V. L., Kovalenko, P. L., Ponomarenko, G. V., Kukhtyn, M. D., & Garkavenko, V. M. (2018). Changes in lipid composition of Escherichia coli and Staphylococcus areus cells under the influence of disinfectants Barez, Biochlor and Geocide. Ukrainian Journal of Ecology, 8(1), 547–550.

Lagha, R., Abdallah, F. B., AL-Sarhan, B. O., & Al-Sodany, Y. (2019). Antibacterial and biofilm inhibitory activity of medicinal plant essential oils against Escherichia coli isolated from UTI patients. Molecules, 24(6), 1161.

Liau, S. Y., Read, D. C., Pugh, W. J., Furr, W. J., & Russell, A. D. (1997). Interaction of silver nitrate with readily identifiable groups: Relationship to the antibacterial action of silver ions. Letters in Applied Microbiology, 25, 279–283.

Lopes, L. Q., Santos, C. G., de Almeida Vaucher, R., Gende, L., Raffin, R. P., & Santos, R. C. (2016). Evaluation of antimicrobial activity of glycerol monolaurate nanocapsules against American foulbrood disease agent and toxicity on bees. Microbial Pathogenesis, 97, 1883–1888.

Maertens, H., De Reu, K., Van Weyenberg, S., Van Coillie, E., Meyer, E., Van Meirhaeghe, H., Van Immerseel, F., Vandenbroucke, V., Vanrobaeys, M., & Dewulf, J. (2018). Evaluation of the hygienogram scores and related data obtained after cleaning and disinfection of poultry houses in flanders during the period 2007 to 2014. Poultry Science, 97(2), 620–627.

Man, A., Santacroce, L., Jacob, R., Mare, A., & Man, L. (2019). Antimicrobial activity of six essential oils against a group of human pathogens. Pathogens, 8(1), 15.

Martynov, V. O., Titov, O. G., Kolombar, T. M., & Brygadyrenko, V. V. (2019). Influence of essential oils of plants on themigration activity of Tribolium confusum (Coleoptera, Tenebrionidae). Biosystems Diversity, 27(2), 177–185.

Matsumura, Y., Yoshikata, K., Kunisaki, S., & Tsuchido, T. (2003). Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69(7), 4278–4281.

McDonnell, G., & Russell, A. D. (1999). Antiseptics and disinfectants: Activity, action and resistance. Clinical Microbiology Reviews, 12, 147–179.

Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramirez, J. T., & Yacaman, M. J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10), 2346–2353.

Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25(20), 4711.

National Research Council (2011). Guide for the care and use of laboratory animals. The National Academies Press, Washington.

Nikolaenko, V. P. (2016). Profilaktika i lechenie infekcionnyh boleznej v pticevodstve [Prevention and treatment of infectious diseases in poultry farming]. Pticevodstvo, 9, 53–56 (in Russian).

Nikolaenko, V. P., Shestakov, I. N., Kononov, A. N., Ozheredova, N. A., Mihajlova, A. V., & Shhedrov, I. N. (2017). Preparat Nikosan dlia aerozol’nogo primenenija pri vyrashhivanii brojlerov [Nikosan preparation for aerosol use in broiler rearing]. Veterinarija, 10, 43–45 (in Russian).

Olaimat, A. N., Al-Holy, M. A., Ghoush, M. H. A., Al-Nabulsi, A. A., Tareq, M. O., & Holley, R. A. (2019). Inhibitory effects of cinnamon and thyme essential oils against Salmonella spp. in hummus (chickpea dip). Journal of Food Processing and Preservation, 43(5), e13925.

Paliy, A. P., Ishchenko, K. V., Marchenko, M. V., Paliy, A. P., & Dubin, R. A. (2018). Effectiveness of aldehyde disinfectant against the causative agents of tuberculosis in domestic animals and birds. Ukrainian Journal of Ecology, 8(1), 845–850.

Park, H. J., Kim, J. Y., Kim, J., Lee, J. H., Hahn, J. H., Gu, M. B., & Yoon, J. (2009). Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Research, 43, 1027–1032.

Petkov, G., Baikov, B. D., & Russak, G. (1987). Possibilities for decontaminating the air in commercial poultry breeding. Veterinarno-Meditsinski Nauki, 24(3), 67–72.

Petrova, O. G., Barashkin, M. I., & Mil’shtejn, I. M. (2016). Vetargent – sovremennoe dezinficirujushhee sredstvo dlia primenenija v pticevodstve [Vetargent is a modern disinfectant for use in poultry farming]. Veterinarija, 11, 47–48 (in Russian).

Ponomarenko, G. V., Kovalenko, V. L., Ponomarenko, O. V., & Balackiy, Y. O. (2017). Effects of microbicide based on lactic acid and metal nanoparticles on laboratory animals. Ukrainian Journal of Ecology, 7(4), 482–485.

Prasher, P., Singh, M., & Mudila, H. (2018). Silver nanoparticles as antimicrobial therapeutics: Current perspectives and future challenges. 3 Biotech, 8(10), 411.

Rawson, T., Dawkins, M. S., & Bonsall, M. B. (2019). A mathematical model of Campylobacter dynamics within a broiler flock. Frontiers in Microbiology, 10, 1940.

Richards, M. J., Hsia, C. Y., Singh, R. R., Haider, H., Kumpf, J., Kawate, T., & Daniel, S. (2016). Membrane protein mobility and orientation preserved in supported bilayers created directly from cell plasma membrane blebs. Langmuir, 32(12), 2963–2974.

Ricke, S. C., Richardson, K., & Dittoe, D. K. (2019). Formaldehydes in feed and their potential interaction with the poultry gastrointestinal tract microbial community – a review. Frontiers in Veterinary Science, 6, 188.

Rodionova, K., Paliy, A., & Кhimych, M. (2021). Veterinary and sanitary assessment and disinfection of refrigerator chambers of meat processing enterprises. Potravinarstvo Slovak Journal of Food Sciences, 15, 616–626.

Rodrigues-Silva, C., Miranda, S. M., Lopes, F. V. S., Silva, M., Dezotti, M., Silva, A. M. T., Faria, J. L., Boaventura, R. A. R., Vilar, V. J. P., & Pinto, E. (2017). Bacteria and fungi inactivation by photocatalysis under UVA irradiation: Liquid and gas phase. Environmental Science and Pollution Research, 24(7), 6372–6381.

Saklou, N. T., Burgess, B. A., Van Metre, D. C., Hornig, K. J., Morley, P. S., & Byers, S. R. (2016). Comparison of disinfectant efficacy when using high-volume directed mist application of accelerated hydrogen peroxide and peroxymonosulfate disinfectants in a large animal hospital. Equine Veterinary Journal, 48(4), 485–489.

Shi, T., Sun, X., & He, Q.-Y. (2018). Cytotoxicity of silver nanoparticles against bacteria and tumor cells. Current Protein and Peptide Science, 19(6), 525–536.

Soliman, S. S. M., Alsaadi, A. I., Youssef, E. G., Khitrov, G., Noreddin, A. M., Husseiny, M. I., & Ibrahim, A. S. (2017). Calli essential oils synergize with Lawsone against multidrug resistant pathogens. Molecules, 22(12), 2223.

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275(1), 177–182.

Souza, A. L., Ceridório, L. F., Paula, G. F., Mattoso, L. H., & Oliveira Jr., O. N. (2015). Understanding the biocide action of poly(hexamethylene biguanide) using Langmuir monolayers of dipalmitoyl phosphatidylglycerol. Colloids and surfaces, B, Biointerfaces, 132, 117–121.

Suchomel, M., Lenhardt, A., Kampf, G., & Grisold, A. (2019). Enterococcus hirae, Enterococcus faecium and Enterococcus faecalis show different sensitivities to typical biocidal agents used for disinfection. The Journal of Hospital Infection, 103(4), 435–440.

Taiwo, M. O., & Adebayo, O. S. (2017). Plant essential oil: An alternative to emerging multidrug resistant pathogens. Journal of Microbiology and Experimentation, 5(5), 163.

Tang, S., & Zheng, J. (2018). Antibacterial activity of silver nanoparticles: Structural effects. Advanced Healthcare Materials, 7(13), e1701503.

Tariq, S., Wani, S., Rasool, W., Shafi, K., Bhat, M. A., Prabhakar, A., Shalla, A. H., & Rather, M. A. (2019). A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microbial Pathogenesis, 134, 103580.

Vandepitte, J., Verhaegen, J., Engbaek, K., Rohner, P., Piot, P., & Heuck, C. C. (2003). Basic laboratory procedures in clinical bacteriology. 2nd ed. World Health Organization, Geneva.

Vasireddy, L., Bingle, L. E. H., & Davies, M. S. (2018). Antimicrobial activity of essential oils against multidrug-resistant clinical isolates of the Burkholderia cepacia complex. PLoS One, 13, e0201835.

Venter, P., Lues, J. F. R., & Theron, H. (2004). Quantification of bioaerosols in automated chicken egg production plants. Poultry Science, 83(7), 1226–1231.

Wojnicz, D., Kucharska, A.Z., Sokól-Letowska, A., Kicia, M., & Tichaczek-Goska, D. (2012). Medicinal plants extracts affect virulence factors expression and biofilm formation by the uropathogenic Escherichia coli. Urological Research, 40(6), 683–697.

Yakhkeshi, S., Rahimi, S., & Naseri, K. G. (2011). The effects of comparison of herbal extracts, antibiotic, probiotic and organic acid on serum lipids, immune response, GIT microbial population, intestinal morphology and performance of broilers. Journal of Medicinal Plants, 10(37), 80–95.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., Zazharska, N. M., & Brygadyrenko, V. V. (2020). Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosystems Diversity, 28(3), 281–289.

Published
2021-10-20
How to Cite
Ponomarenko, G. V., Kovalenko, V. L., Balatskiy, Y. O., Ponomarenko, O. V., Paliy, A. P., & Shulyak, S. V. (2021). Bactericidal efficiency of preparation based on essential oils used in aerosol disinfection in the presence of poultry . Regulatory Mechanisms in Biosystems, 12(4), 635-641. https://doi.org/10.15421/022187