Immunological evaluation of inactivated Newcastle disease vaccine depending on adjuvant composition

  • A. I. Chegrynets National University of Food Technologies
  • O. O. Saliy “Biotestlab” Ltd.
  • I. A. Sobko “Center of Veterinary Diagnostics” Ltd.
  • V. O. Krasinko National University of Food Technologies
Keywords: poultry; Newcastle disease; inactivated vaccine; аdjuvant; postvaсcinal immune response; reaction of hemagglutination.


Newcastle disease is a global problem that is being recorded in most countries and also a serious obstacle to exchange of genetic material of poultry in various countries of the world. Control of the Newcastle disease comprises correct injection of efficacious vaccines so as to decrease or eliminate the clinical disease. Our goal was to perform comparative studies of the vaccines against Newcastle disease of water in oil type, the adjuvant being mineral oil mixed with emulsifiers (Span-80 and Tween-80) and ready-to-use adjuvant system (Montanide ISA 70), and study the impact of composition of adjuvant constituent on physical-chemical and immunogenic properties of inactivated vaccines. To reproduce virus-containing material and carried out titration of the viruses, we used chicken embryos free of pathogenic microflora. Aqueous phase for the preparation of emulsion-based vaccines of water in oil type consisted of antigen to Newcastle disease of La-Sota strain, manufactured by Biotestlab Ltd, and phosphate-saline buffer. To evaluate the effectiveness of the vaccine and induce immune response, we used 1-day old pathogen-free chickens, which were obtained from chicken embryos free of pathogenic microflora. As the positive control in the experiment, we used commercial vaccine. One-day chickens were divided into 3 groups (I, II, III) comprising 12 individuals each and one group (IV) consisting of 8 individuals as the control group with individual numeration. Chickens in groups I, II and III were divided into two subgroups (n = 8 and n = 4) to determine immunogenic efficiency and safety of the vaccine. Immunization was carried out through single subcutaneous injections in the region of the neck. To study immunogenic efficiency, the chickens were immunized with the dose of 0.1 mL (1 dose), and 0.2 mL (2 doses) to determine safety. After the immunization of 1-day old pathogen-free chickens with 0.1 mL dose, the obtained level of antibodies in the serum of vaccinated chickens on days 14, 21, 28, 35 and 42 after the vaccination indicated the ability of provoking the immune response to Newcastle disease at high level and safety of the vaccination for chickens. All the recipes of the examined series of the vaccines and the commercial vaccine produced appropriate level of viscosity according to the criterion equaling ≤ 200 mm2/s at Р <0.05, promoting fluidity of the vaccine and providing easier passage through the needle during the application. Both of the studied vaccines may be used in poultry farming for prophylaxis of Newcastle disease among chickens.


Abd-Ellatieff, H. A., Abd El Aziem, A. N., Elbestawy, A. R., Goda, W. M., Belih, S. S., Ellakany, H. F., El-Hamid, S., Yanai, T., AbouRawash, A. A., & El-Habashi, N. (2021). Efficacy of vaccination against infection with velogenic Newcastle Disease Virus Genotypes VI and VII 1.1 strains in japanese quails. Journal of Comparative Pathology, 186, 35–50.

Absalón, A. E., Cortés-Espinosa, D. V., Lucio, E., Miller, P. J., & Afonso, C. L. (2019). Epidemiology, control, and prevention of Newcastle Disease in endemic regions: Latin America. Tropical Animal Health and Production, 51(5), 1033–1048.

Afonso, C. L., Amarasinghe, G. K., Banyai, K., Bao, Y., Basler, C. F., Bavari, S., Bejerman, N., Blasdell, K. R., Briand, F. X., Briese, T., Bukreyev, A., Calisher, C. H., Chandran, K., Chéng, J., Clawson, A. N., Collins, P. L., Dietzgen, R. G., Dolnik, O., Domier, L. L., Dürrwald, R., Dye, J. M., Easton, H., Farkas, S. L., Freitas-Astúa, J., Formenty, P., Fouchier, R. A., Fú, Y., Ghedin, E., Goodin, M. M., Hewson, R., Horie, M., Hyndman, T. H., Jiāng, D., Kitajima, E. W., Kobinger, G. P., Kondo, H., Kurath, G., Lamb, R. A., Lenardon, S., Leroy, E. M., Li, C. X., Lin, X. D., Liú, L., Longdon, B., Marton, S., Maisner, A., Mühlberger, E., Netesov, S. V., Nowotny, N., Patterson, J. L., Payne, S. L., Paweska, J. T., Randall, R. E., Rima, B. K., Rota, P., Rubbenstroth, D., Schwemmla, M., Shi, M., Smithers, S. J., Stenglein, M. D., Stone, D. M., Takada, A., Terregino, C., Tesh, R. B., Tian, J. H., Tomonaga, K., Tordo, N., Towner, J. S., Vasilakis, N., Verbeek, M., Volchkov, V. E., Wahl-Jensen, V., Walsh, J. A., Walker, P. J., Wang, D., Wang, L. F., Wetzel, T., Whitfield, A. E., Xiè, J. T., Yuen, K. Y., Zhang, Y. Z., & Kuhn, J. H. (2016). Taxonomy of the order Mononegavirales: Update 2016. Archives of Virology, 161(8), 2351–2360.

Ali, Z. M., Hassan, M. A. E. M., Hussein, H. A., Ahmed, B. M., & El Sanousi, A. A. E. G. (2017). Protective efficacy of combined trivalent inactivated ISA 71 oil adjuvant vaccine against avian influenza virus subtypes (H9N2 and H5N1) and Newcastle disease virus. Veterinary World, 10(10), 1212.

Aljumaili, O. A., Bello, M. B., Yeap, S. K., Omar, A. R., & Ideris, A. (2020). Protective efficacy of inactivated Newcastle disease virus vaccines prepared in two different oil-based adjuvants. The Onderstepoort Journal of Veterinary Research, 87(1), e1–e7.

Amarasinghe, G. K., Aréchiga Ceballos, N. G., Banyard, A. C., Basler, C. F., Bavari, S., Bennett, A. J., Blasdell, K. R., Briese, T., Bukreyev, A., Cai, Y., Calisher, C. H., Campos Lawson, C., Chandran, K., Chapman, C. A., Chiu, C. Y., Choi, K. S., Collins, P. L., Dietzgen, R. G., Dolja, V. V., Dolnik, O., Domier, L. L., Dürrwald, R., Dye, J. M., Easton, A. J., Ebihara, H., Echevarría, J. E., Fooks, A. R., Formenty, P. B. H., Fouchier, R. A. M., Freuling, C. M., Ghedin, E., Goldberg, T. L., Hewson, R., Horie, M., Hyndman, T. H., Jiāng, D., Kityo, R., Kobinger, G. P., Kondō, H., Koonin, E. V., Krupovic, M., Kurath, G., Lamb, R. A., Lee, B., Leroy, E. M., Maes, P., Maisner, A., Marston, D. A., Mor, S. K., Müller, T., Mühlberger, E., Ramírez, V. M. N., Netesov, S. V., Ng, T. F. F., Nowotny, N., Palacios, G., Patterson, J. L., Paweska, J. T., Payne, S. L., Prieto, K., Rima, B. K., Rota, P., Rubbenstroth, D., Schwemmle, M., Siddell, S., Smither, S. J., Son, Q., Song, T., Stenglein, M. D., Stone, D. M., Takada, A., Tesh, R. B., Thomazelli, L. M., Tomonaga, K., Tordo N., Towner, J. S., Vasilakis, N., Vázquez-Morón, S., Verdugo, C., Volchkov, V. E., Wahl, V., Walker, P. J., Wang, D., Wang, L. F., Wellehan, J. F. X., Wiley, M. R., Whitfield, A. E., Wolf, Y. I., Yè, G., Zhāng, Y. Z., & Kuhn, J. H. (2018). Taxonomy of the order Mononegavirales: Update 2018. Archives of Virology, 163(8), 2283–2294.

Arous, J. B., Deville, S., Pal, J. K., Baksi, S., Bertrand, F., & Dupuis, L. (2013). Reduction of Newcastle disease vaccine dose using a novel adjuvant for cellular immune response in poultry. Procedia in Vaccinology, 7, 28–33.

Ashraf, A., & Shah, M. S. (2014). Newcastle disease: Present status and future challenges for developing countries. African Journal of Microbiology Research, 8(5), 411–416.

Brugh, M., Stone, H. D., & Lupton, H. W. (1983). Comparison of inactivated Newcastle disease viral vaccines containing different emulsion adjuvants. American Journal of Veterinary Research, 44(1), 72–75.

Cahyani, J. I., Widyarini, S., & Wibowo, M. H. (2020). Comparative safety and efficacy of two bivalent vaccines containing Newcastle disease LaSota and avian influenza H9N2 Sidrap isolate formulated with different oil adjuvants. Veterinary World, 13(11), 2493.

Chen, X., Yang, H., Jia, J., Chen, Y., Wang, J., Chen, H., & Jiang, C. (2021). Mulberry leaf polysaccharide supplementation contributes to enhancing the respiratory mucosal barrier immune response in Newcastle disease virus-vaccinated chicks. Poultry Science, 100(2), 592–602.

Coffman, R. L., Sher, A., & Seder, R. A. (2010). Vaccine adjuvants: Putting innate immunity to work. Immunity, 33(4), 492–503.

Cvetić, Ž., Nedeljković, G., Jergović, M., Bendelja, K., Mazija, H., & Gottstein, Ž. (2021). Immunogenicity of Newcastle disease virus strain ZG1999HDS applied oculonasally or by means of nebulization to day-old chicks. Poultry Science, 100(4), 101001.

Dimitrov, K. M., Afonso, C. L., Yu, Q., & Miller, P. J. (2017). Newcastle disease vaccines – A solved problem or a continuous challenge? Veterinary Microbiology, 206, 126–136.

Fukanoki, S. I., Iwakura, T., Iwaki, S., Matsumoto, K., Takeda, R., Ikeda, K., Shi, Z., & Mori, H. (2001). Safety and efficacy of water-in-oil-in-water emulsion vaccines containing Newcastle disease virus haemagglutinin-neuraminidase glycoprotein. Avian Pathology, 30(5), 509–516.

Gan, S. D., & Patel, K. R. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology, 133(9), e12.

Ganar, K., Das, M., Sinha, S., & Kumar, S. (2014). Newcastle disease virus: Current status and our understanding. Virus Research, 184, 71–81.

Gharajalar, S. N., Mirzai, P., Nofouzi, K., & Madadi, M. S. (2020). Immune enhancing effects of Lactobacillus acidophilus on Newcastle disease vaccination in chickens. Comparative Immunology, Microbiology and Infectious Diseases, 72, 101520.

Hassan, M. I., Abd El-Azeem, M. W., Selim, A., & Sultan, S. (2020). Molecular and biological characterization of the immunological potency of Newcastle disease virus oil emulsion-inactivated vaccines prepared from field isolate obtained from vaccinated chickens outbreak. Brazilian Journal of Microbiology, 51(2), 815–826.

Heegaard, P. M., Dedieu, L., Johnson, N., Le Potier, M. F., Mockey, M., Mutinelli, F., Vahlenkamp, T., Vascellari, M., & Sørensen, N. S. (2011). Adjuvants and delivery systems in veterinary vaccinology: Current state and future developments. Archives of Virology, 156(2), 183–202.

Hn, E. S. M. (2018). Assessment of physical and immunological characters of an inactivated avian influenza (H5N1) vaccine prepared using Montanide oil 71™ ISA-RVG as adjuvant. Benha Veterinary Medical Journal, 34(2), 110–120.

Hongzhuan, Z., Ying, T., Xia, S., Jinsong, G., Zhenhua, Z., Beiyu, J., Yanyan, C., Lulu, L., Jue, Z., Bing, Y., & Jing, F. (2020). Preparation of the inactivated Newcastle disease vaccine by plasma activated water and evaluation of its protection efficacy. Applied Microbiology and Biotechnology, 104(1), 107–117.

Ismail, N. M., El-Deeb, A. H., Emara, M. M., Tawfik, H. I., Abdel Wanis, N., & Hussein, H. A. (2018). IMS 1313-nanoparticle mucosal vaccine enhances immunity against avian influenza and newcastle disease viruses. International Journal of Poultry Science, 17, 167–174.

Jafari, M., Moghaddam Pour, M., Taghizadeh, M., Masoudi, S., & Bayat, Z. (2017). Comparative assessment of humoral immune responses of aluminum hydroxide and oil-emulsion adjuvants in influenza (H9N2) and Newcastle inactive vaccines to chickens. Artificial Cells, Nanomedicine, and Biotechnology, 45(1), 84–89.

Jang, S. I., Lillehoj, H. S., Lee, S. H., Lee, K. W., Lillehoj, E. P., Bertrand, F., Dupuis, L., & Deville, S. (2011). Montanide™ ISA 71 VG adjuvant enhances antibody and cell-mediated immune responses to profilin subunit antigen vaccination and promotes protection against Eimeria acervulina and Eimeria tenella. Experimental Parasitology, 127(1), 178–183.

Li, R. F., Liu, S. P., Yuan, Z. H., Yi, J. E., Tian, Y. N., Wu, J., & Wen, L. X. (2020). Effects of induced stress from the live LaSota Newcastle disease vaccination on the growth performance and immune function in broiler chickens. Poultry Science, 99(4), 1896–1905.

Miller, P. J., Afonso, C. L., El Attrache, J., Dorsey, K. M., Courtney, S. C., Guo, Z., & Kapczynski, D. R. (2013). Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Developmental and Comparative Immunology, 41(4), 505–513.

Miller, P. J., Estevez, C., Yu, Q., Suarez, D. L., & King, D. J. (2009). Comparison of viral shedding following vaccination with inactivated and live Newcastle disease vaccines formulated with wild-type and recombinant viruses. Avian Diseases, 53(1), 39–49.

Muzyka, D. V. (2013). Osoblyvosti formuvannia spetsyfichnoho imunitetu u silskohospodarskoji ptytsi pislia shcheplennia inaktyvovanoju trokhvalentnoju vaktsynoju proty hrypu ptytsi pidtypiv N5N7 ta niukaslskoоi khvoroby [Peculiarities of development of specific immunity in agricultural poultry after vaccination with inactivated three-valent vaccine against avian influenza of N5, N7 types and Newcstle disease]. Biolohiia Tvaryn, 15(3), 70–77.

Ogali, I. N., Okumu, P. O., Mungube, E. O., Lichoti, J. K., Ogada, S., Moraa, G. K., Agwanda, B. R., & Ommeh, S. C. (2020). Genomic and pathogenic characteristics of virulent Newcastle disease virus isolated from chicken in live bird Markets and Backyard Flocks in Kenya. International Journal of Microbiology, 2020, 4705768.

Rahman, M. M., Sarker, R. D., & Nooruzzaman, M. (2017). Evaluation of serum antibody titer level against Newcastle disease virus in vaccinated broiler chickens. Annals of Veterinary and Animfl Science, 4, 94–98.

Reed, L. J., & Muench, H. (1938). A simple method of estimating fifty per cent endpoints. American Journal of Epidemiology, 27(3), 493–497.

Ruan, B., Liu, Q., Chen, Y., Niu, X., Wang, X., Zhang, C., Guo, M., Zhang, X., Cao, Y., & Wu, Y. (2020). Generation and evaluation of a vaccine candidate of attenuated and heat-resistant genotype VIII Newcastle disease virus. Poultry Science, 99(7), 3437–3444.

Schijns, V. E., van de Zande, S., Lupiani, B., & Reddy, S. M. (2014). Practical aspects of poultry vaccination. In: Редактора Avian immunology. Academic Press. Pp. 345–362.

Sedeik, M. E., Elbestawy, A. R., El-Shall, N. A., Abd El-Hack, M. E., Saadeldin, I. M., & Swelum, A. A. (2019). Comparative efficacy of commercial inactivated Newcastle disease virus vaccines against Newcastle disease virus genotype VII in broiler chickens. Poultry Science, 98(5), 2000–2007.

Tabidi, M. H., Makkawi, A., Mahasin, E., & Ali, A. S. (2004). Comparative evaluation of haemagglutination inhibition test and enzyme-linked immunosorbent assay for detection of antibodies against Newcastle disease vaccine in broiler chicks. International Journal of Poultry Science, 3(10), 668–670.

Wanasawaeng, W., Tawatsin, A., Sasipreeyajan, J., Poomvises, P., & Chansiripornchai, N. (2009). Development of inactivated Newcastle disease vaccine using palm oil as an adjuvant. The Thai Journal of Veterinary Medicine, 39(1), 9–16.

Yuan, L., Wang, Y., Li, Z., Ma, X., Cui, X., Chi, X., Xu, W., & Hu, S. (2020). Sunflower seed oil containing ginseng stem-leaf saponins (E515-D) is a safe adjuvant for Newcastle disease vaccine. Poultry Science, 99(10), 4795–4803.

How to Cite
Chegrynets, A. I., Saliy, O. O., Sobko, I. A., & Krasinko, V. O. (2021). Immunological evaluation of inactivated Newcastle disease vaccine depending on adjuvant composition . Regulatory Mechanisms in Biosystems, 12(3), 490-497.