Vibration influence on the O2-dependent processes activity in human erythrocytes

  • O. I. Dotsenko Vasyl’ Stus Donetsk National University
  • А. М. Mischenko Vasyl’ Stus Donetsk National University
  • G. V. Taradina Vasyl’ Stus Donetsk National University
Keywords: oxidative stress; catalase; reactive oxygen species; molecularoxygen; nanobubbles; ligand forms of hemoglobin; membrane-bound hemoglobin

Abstract

The early signs of vibration effects on the human body are microcirculation and transcapillary metabolism disorders, accompanied by disruption of the supply to and utilization of oxygen in the tissues and organs. However, there are few experimental studies aimed at finding targets of vibration in cells and determining the action mechanism of vibration. In in vitro experiments, human erythrocytes in buffer solution were exposed to low-frequency vibration (frequency range 8–32 Hz, amplitudes 0.5–0.9 mm) for 3 hours. The dynamics of the accumulation of membrane-bound catalase and hemoglobin and the distribution of ligand hemoglobin in the membrane-bound fraction were studied as the indicators of functional activity of cells. The choice of these indicators is justified by the participation of catalase and hemoglobin in O2-dependent cellular reactions as a part of protein complexes. Since pО2 is a trigger of conformational transitions in the hemoglobin molecule, simultaneously with oxygen transport, hemoglobin signals to different metabolic systems about oxygen conditions in the environment. The studies revealed that in the conditions of vibration, the activity of membrane-associated catalase increased by 40–50% in the frequency range of 12–24 Hz (amplitude 0.5 ± 0.04 mm), by 20–30% in the amplitude of 0.9 mm, but after about 100–120 min exposure the enzyme activity decreased even below the control level. There was a dose-dependent accumulation of membrane-bound hemoglobin during exposure to vibration. In the membrane-bound fraction of hemoglobin, oxyhemoglobin had the highest content (60–80%), while the content of methemoglobin varied 5–20%. During vibrations in the frequency range 12–28 Hz, 0.5 mm, we recorded 10–30% increase in oxyhemoglobin. With increase in the vibration amplitude (0.9 mm) in the frequency range of 16–32 Hz, constant content of oxyhemoglobin was noted at the beginning of the experiment, which tended to decrease during the last exposure time. Frequency of 32 Hz caused increase in the deoxyhemoglobin content in the membrane-bound fraction. The content of methemoglobin (metHb) in erythrocytes significantly increased during exposure to the frequency range of 12–24 Hz, with the amplitude of 0.5 mm (1.3–2.4 times). During the exposure to frequencies of 28 and 32 Hz, we observed the transition of methemoglobin to hemichrome. The content of methemoglobin in the cells was lower and decreased at the end of the experiment when the vibration amplitude was 0.9 mm. In these experimental conditions, no increase in hemichrome content in the membrane-bound fraction was recorded. Therefore, the degree of binding of catalase and hemoglobin with the membrane of erythrocytes that were exposed to vibration and the changes in the content of ligand forms in the composition of membrane-bound hemoglobin are dose-dependent. Low-frequency vibration initiates O2-dependent processes in erythrocytes. Targets of such an influence are nanobubbles of dissolved air (babstons), retained on the surface of erythrocytes due to Coulomb interactions, capable of coagulation and increase in size under the action of vibration. At first, the consequences of these processes are increase in oxygen content in the surface of erythrocytes, and then decrease as a result of degassing. Thus, increase in oxygen content on the surface initiates redox reactions, whereas decrease in oxygen content leads to reconstruction of metabolic processes oriented at overcoming hypoxia.

References

Attia, A. M. M., Ibrahim, F. A. A., Abd El-Latif, N. A., Aziz, S. W., Moussa, S. A. A. (2015). Biophysical study on conformational stability against autoxidation of oxyhemoglobin and erythrocytes oxidative status in humans and rats. Wulfenia Journal, 22(12), 264–281.

Bayer, S. B., Low, F. M., Hampton, M. B., & Winterbourn, C. C. (2016). Interactions between peroxiredoxin 2, hemichrome and the erythrocyte membrane. Free Radical Research, 50(12), 1329–1339.

Bou, R., Codony, R., Tres, A., Decker, E. A., & Guardiola, F. (2008). Determination of hydroperoxides in foods and biological samples by the ferrous oxidation-xylenol orange method: A review of the factors that influence the method’s performance. Analytical Biochemistry, 377(1), 1–15.

Bunkin, N. F., Ninham, B. W., Ignatiev, P. S., Kozlov, V. A., Shkirin, A. V., & Starosvetskij, A. V. (2011). Long-living nanobubbles of dissolved gas in aqueous solutions of salts and erythrocyte suspensions. Journal Biophotonics, 4(3), 150–164.

Bunkin, N. F., Shkirin, A. V., Ninham, B. W., Chirikov, S. N., Chaikov, L. L., Penkov, N. V., Kozlov, V. A., & Gudkov, S. V. (2020). Shaking-induced aggregation and flotation in immunoglobulin dispersions: Differences between water and water-ethanol mixtures. ACS Omega, 5(24), 14689–14701.

Bunkin, N. F., Shkirin, A. V., Suyazov, N. V., Babenko, V. A., Sychev, A. A., Penkov, N. V., Belosludtsev, K. N., & Gudkov, S. V. (2016). Formation and dynamics of ion-stabilized gas nanobubble phase in the bulk of aqueous NaCl solutions. The Journal of Physical Chemistry B, 120(7), 1291–1303.

Chu, H., McKenna, M. M., Krump, N. A., Zheng, S., Mendelsohn, L., Thein, S. L., Garrett, L. J., Bodine, D. M., & Low, P. S. (2016). Reversible binding of hemoglobin to band 3 constitutes the molecular switch that mediates O2 regulation of erythrocyte properties. Blood, 128(23), 2708–2716.

Chwastowski, J., Ciesielski, W., Khachatryan, K., Kołoczek, H., Kulawik, D., Oszczęda, Z., Soroka, J. A., Tomasik, P., & Witczak, M. (2020). Water of increased content of molecular oxygen. Water, 12(9), 2488–2508.

Cornish, J., Chamberlain, S. G., Owen, D., & Mott, H. R. (2020). Intrinsically disordered proteins and membranes: A marriage of convenience for cell signalling? Biochemical Society Transactions, 48(6), 2669–2689.

Dotsenko, O. I. (2014). Kislotno-gemoliticheskaja ustojchivost’ eritrocitov naprjazhennogo eritropoeza v uslovijah nizkochastotnoj vibracii [Acid-hemolytic stability of erythrocytes of intense erythropoiesis under conditions of low-frequency vibration]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 22(1), 53–59 (in Russian).

 

457

Dotsenko, O. I., & Mischenko, A. M. (2011). Vlijanie nizkochastotnoj vibracii na kislotnuju rezistentnost’ eritrocitov [Influence of low-frequency vibration on the erythrocytes acid resistance]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 19(1), 22–30 (in Russian).

 

Dotsenko, O. I., & Troshchynskaya, Y. A. (2014). Rol’ fermentov katabolizma AMR v energeticheskom statuse eritrocitov v uslovijah ih istoshhenija po gljukoze [Role of AMP catabolism enzymes in the energetic status of erythrocytes under conditions of glucose depletion]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 22(1), 46–52 (in Russian).

Dotsenko, O. I., Dotsenko, V. A., & Mischenko, A. M. (2010). Aktivnost’ superoksiddismutazy i katalazy v eritrocitah i nekotoryh tkanjah myshej v uslovijah nizkochastotnoj vibracii [The activity of erythrocytes super-oxide dismutase and catalase and some other tissues at condition of low frequency vibration]. Physics of the Alive, 18(1), 107–113 (in Russian).

Fang, Z., Wang, X., Zhou, L., Zhang, L., & Hu, J. (2020). Formation and stability of bulk nanobubbles by vibration. Langmuir, 36, 2264–2270.

Gudkov, S. V., Lyakhov, G. A., Pustovoy, V. I., & Shcherbakov, I. A. (2021). Vibration-vortex mechanism of radical-reaction activation in an aqueous solution: Physical analogies. Physics of Wave Phenomena, 29(2), 108–113.

Gudkov, S. V., Penkov, N. V., Baimler, I. V., Lyakhov, G. A., Pustovoy, V. I., Simakin, A. V., Sarimov, R. M., & Scherbakov, I. A. (2020). Effect of mechanical shaking on the physicochemical properties of aqueous solutions. International Journal of Molecular Sciences, 21(21), 8033–8045.

Issaian, A., Hay, A., Dzieciatkowska, M., Roberti, D., Perrotta, S., Darula, Z., Redzic, J., Busch, M. P., Page, G. P., Rogers, S. C., Doctor, A., Hansen, K. C., Eisenmesser, E. Z., Zimring, J. C., & D’Alessandro, A. (2021). The interactome of the N-terminus of band 3 regulates red blood cell metabolism and storage quality. Haematologica, 106, in print.

Jaeken, L., & Matveev, V. V. (2012). Coherent behavior and the bound state of water and K+ imply another model of bioenergetics: Negative entropy instead of high-energy bonds. The Open Biochemistry Journal, 6, 139–159.

Kiryakov, V. A., Pavlovskaya, N. A., Lapko, I. V., Bogatyreva, I. A., Antoshina, L. I., & Oshkoderov, O. A. (2018). Vozdejstvie proizvodstvennoj vibracii na organizm cheloveka na molekulyarno-kletochnom urovne [Impact of occupational vibration on molecular and cell level of human body]. Russian Journal of Occupational Health and Industrial Ecology, 9, 34–43 (in Russian).

Kosmachevskaya, O. V., & Topunov, A. F. (2019). Al’ternativnye i dopolnitel’nye funkcii eritrocitarnogo gemoglobina [Alternate and additional functions of the erythrocyte hemoglobin]. Biochemistry (Moscow), 84(1), 3–23 (in Russian).

Kosmachevskaya, O. V., Nasybullina, E. I., Topunov, A. F., & Blindar, V. N. (2019). Binding of erythrocyte hemoglobin to the membrane to realize signal-regulatory function (review). Applied Biochemistry and Microbiology, 55(2), 83–98.

Krajnak, K. (2018). Health effects associated with occupational exposure to hand-arm or whole body vibration. Journal of Toxicology and Environmental Health, Part B, Critical Reviews, 21(5), 320–334.

Li, Y., & Buckin, V. (2019). State of oxygen molecules in aqueous supersaturated solutions. The Journal of Physical Chemistry B, 123, 4025–4043.

Matveev, V. V. (2010). Native aggregation as a cause of origin of temporary cellular structures needed for all forms of cellular activity, signaling and transformations. Theoretical Biology and Medical Modelling, 7, 19–40.

Matveev, V. V. (2019). Cell theory, intrinsically disordered proteins, and the physics of the origin of life. Progress in Biophysics and Molecular Biology, 149, 114–130.

Melo, D., Rocha, S., Coimbra, S., & Santos Silva, A. (2019). Interplay between erythrocyte peroxidases and membrane. In: Tombak, A. (Ed.). Erythrocyte. IntechOpen, London.

Mindukshev, I. V., Sudnitsyna, J. S., Skverchinskaya, E. A., Andreyeva, A. Y., Dobrylko, I. A., Senchenkova, E. Y., Krivchenko, A. I., & Gambaryan, S. P. (2019). Erythrocytes’ reactions to osmotic, ammonium, and oxidative stress are inhibited under hypoxic conditions. Biochemistry (Moscow), 13(4), 352–364.

Nemkov, T., Sun, K., Reisz, J. A., Song, A., Yoshida, T., Dunham, A., Wither, M. J., Francis, R. O., Roach, R. C., Dzieciatkowska, M., Rogers, S. C., Doctor, A., Kriebardis, A., Antonelou, M., Papassideri, I., Young, C. T., Thomas, T. A., Hansen, K. C., Spitalnik, S. L., Xia, Y., Zimring, J. C., Hod, E. A., & D’Alessandro, A. (2018). Hypoxia modulates the purine salvage pathway and decreases red blood cell and supernatant levels of hypoxanthine during refrigerated storage. Haematologica, 103(2), 361–372.

Potapova, I. A. (2020). Osobennosti zhirno-kislotnogo sostava syvorotki krovi pri vibracionnoj bolezni [Features of fatty acid composition of blood serum in vibration disease]. Russian Journal of Occupational Health and Industrial Ecology, 60(1), 59–63 (in Russian).

Puchulu-Campanella, E., Chu, H., Anstee, D. J., Galan, J. A., Tao, W. A., & Low, P. S. (2013). Identification of the components of a glycolytic enzyme metabolon on the human red blood cell membrane. The Journal of Biological Chemistry, 288(2), 848–858.

Ratanasopa, K., Strader, M. B., Alayash, A. I., & Bulow, L. (2015). Dissection of the radical reactions linked to fetal hemoglobin reveals enhanced pseudoperoxidase activity. Frontiers in Physiology, 6, 39.

Rocha, S., Rocha-Pereira, P., Cleto, E., Ferreira, F., Belo, L., & Santos-Silva, A. (2019). Linkage of typically cytosolic peroxidases to erythrocyte membrane – A possible mechanism of protection in hereditary spherocytosis. Biochimica et Biophysica Acta – Biomembranes, 1862(3), 183172.

Rodríguez-Bolaños, M., Miranda-Astudillo, H., Pérez-Castañeda, E., González-Halphen, D., & Perez-Montfort, R. (2020). Native aggregation is a common feature among triosephosphate isomerases of different species. Scientific Reports, 10(1), 1338–1352.

Saarikangas, J., & Barral, Y. (2016). Protein aggregation as a mechanism of adaptive cellular responses. Current Genetics, 62(4), 711–724.

Shatalov, V. M. (2012). Mechanism of the biological impact of weak electromagnettic fields and the in vitro effects of blood degassing. Biophysics, 57(6), 808–813.

Shatalov, V. M., Filippov, A. E., & Noga, I. V. (2012). Bubbles induced fluctuations of some properties of aqueous solutions. Biophysics, 57(4), 421–427.

Sidorenko, S. V., Ziganshin, R. H., Luneva, O. G., Deev, L. I., Alekseeva, N. V., Maksimov, G. V., & Orlov, S. N. (2018). Proteomics-based identification of hypoxia-sensitive membrane-bound proteins in rat erythrocytes. Journal of Proteomics, 184, 25–33.

Stefanovic, M., Puchulu-Campanella, E., Kodippili, G., & Low, P. S. (2013). Oxygen regulates the band 3-ankyrin bridge in the human erythrocyte membrane. The Biochemical Journal, 449(1), 143–150.

Storozhuk, P. G. (2000). Fermenty prjamoj i kosvennoj antiradikal’noj zashhity eritrocitov i ih rol’ v iniciacii processov oksigenacii gemoglobina, antibakterial’noj zashhite i delenii kletok [Enzymes of direct and indirect antiradical protection of red blood cells and their role in triggering processes of oxygenation of hemoglobin, antibacterial protection and cell division]. Vestnik Intensive Therapy, 3, 8–13 (in Russian).

Takahashi, M., Shirai, Y., & Sugawa, S. (2021). Free-radical generation from bulk nanobubbles in aqueous electrolyte solutions: ESR spin-trap observation of microbubble-treated water. Langmuir, 37(16), 5005–5011.

Tang, F., Feng, L., Li, R., Wang, W., Liu, H., Yang, Q., & Ge, R.-L. (2019). Inhibition of suicidal erythrocyte death by chronic hypoxia. High Altitude Medicine & Biology, 20(2), 112–119.

Uchida, T., Liu, S., Enari, M., Oshita, S., Yamazaki, K., & Gohara, K. (2016). Effect of NaCl on the lifetime of micro- and nanobubbles. Nanomaterials, 6(2), 31–40.

Vorobevа, V. V., & Shabanov, P. D. (2019). Kletochnye mehanizmy formirovanija gipoksii v tkanjah jeksperimental'nyh zhivotnyh na fone var'irovanija harakteristik vibracionnogo vozdejstvija [Cellular mechanisms of hypoxia development in the tissues of experimental animals under varying characteristics of vibration exposure]. Reviews on Clinical Pharmacology and Drug Therapy, 17(3), 59–70 (in Russian).

Vorobevа, V. V., & Shabanov, P. D. (2020). Vlijanie obshhej vibracii na funkcii dyhatel’noj cepi mitohondrij pochki krolikov v eksperimente [Influence of general vibration on the functions of respiratory mitochondria of kidneys of rabbits in an experiment]. Russian Journal of Occupational Health and Industrial Ecology, 5, 344–348 (in Russian).

Welbourn, E. M., Wilson, M. T., Yusof, A., Metodiev, M. V., & Cooper, C. E. (2017). The mechanism of formation, structure and physiological relevance of covalent hemoglobin attachment to the erythrocyte membrane. Free Radical Biology and Medicine, 103, 95–106.

Wolff, S. P. (1994). [18] Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Oxygen Radicals in Biological Systems Part C, том?, 182–189.

Wolff, S. P., & Dean, R. T. (1987). Monosaccharide autoxidation: A potential source of oxidative stress in diabetes? Bioelectrochemistry and Bioenergetics, 18, 283–293.

Yogurtcu, O. N., & Johnson, M. E. (2018). Cytosolic proteins can exploit membrane localization to trigger functional assembly. PLoS Computational Biology, 14(3), e1006031.

Zheng, S., Krump, N. A., McKenna, M. M., Li, Y.-H., Hannemann, A., Garrett, L. J., Gibson, J. S., Bodine, D. M., & Low, P. S. (2019). Regulation of erythrocyte Na+/K+/2Cl− cotransport by an oxygen-switched kinase cascade. The Journal of Biological Chemistry, 294(7), 2519–2528.

Zhou, S., Giannetto, M., DeCourcey, J., Kang, H., Kang, N., Li, Y., Zheng, S., Zhao, H., Simmons, W. R., Wei, H. S., Bodine, D. M., Low, P. S., Nedergaard, M., & Wan, J. (2019). Oxygen tension-mediated erythrocyte membrane interactions regulate cerebral capillary hyperemia. Science Advances, 5(5), aaw4466.

Published
2021-08-18
How to Cite
Dotsenko, O. I., MischenkoА. М., & Taradina, G. V. (2021). Vibration influence on the O2-dependent processes activity in human erythrocytes . Regulatory Mechanisms in Biosystems, 12(3), 452-458. https://doi.org/10.15421/022162