Hereditary tubulopathies accompanying polyuia

  • M. O. Ryznychuk Bukovinian State Medical University
  • V. P. Pishak National Academy of Pedagogical Sciences
  • N. V. Bacyuk-Ponych Bukovinian State Medical University
  • O. V. Pishak Yuriy Fedkovich Chrnivtsi National University
Keywords: renal glucosuria; nephrogenic diabetes insipidus; pseudohypoaldosteronism; children; genes.


Tubulopathies are a group of heterogeneous diseases that are manifested in the malfunction of the renal tubules. This review addresses tubulopathies associated with polyuria syndrome, namely renal glucosuria syndrome, nephrogenic diabetes insipidus and pseudohyperaldosteronism. Types of renal glucosuria are described, namely: type A, type B and the most severe type 0. Type A is characterized by a low filtration threshold and low glucose reabsorption. The type of inheritance is autosomal recessive. Type B, autosomal dominant, is characterized by uneven activity of glucose transport, in which its reabsorption is reduced only in some nephrons. That is, normal reabsorption of glucose is maintained, but the filtration threshold of the latter is reduced. Type 0 with a severe course is characterized by complete inability of epithelial cells of the proximal tubules to reabsorb glucose. Nephrogenic diabetes insipidus is a rare inherited disease caused by impaired response of the renal tubules to antidiuretic hormone (ADH). Depending on the degree of inability to concentrate urine, there are complete and partial forms. It is divided into nephrogenic diabetes insipidus type I (X-linked recessive); nephrogenic diabetes insipidus type II (autosomal recessive and autosomal dominant) and nephrogenic diabetes insipidus syndrome with dementia and intracerebral calcifications (type of inheritance remains unknown). Children with autosomal recessive type of inheritance suffer from the more severe disease course. Pseudohypoaldosteronism is characterized by a special condition of the renal tubules which is due to insufficient sensitivity of the tubular epithelium to aldosterone, which in turn leads to hyperaldosteronism, the development of hyponatremia, metabolic acidosis with hyperkalemia, polydipsia and polyuria, decreased sodium reabsorption and retardation of the child's physical development. The classification includes three syndromes of pseudohypoaldosteronism, namely: type I (PHA1), which is divided into PHA1A (autosomal dominant, renal), PHA1B (autosomal recessive, systemic); type II (PHA2; Gordon’s syndrome), type III (secondary), which develops as a result of renal pathology.


Assadi, F., & Sharbaf, F. G. (2015). Sildenafil for the treatment of congenital nephrogenic diabetes insipidus. American Journal of Nephrology, 42(1), 65–69.

Avner, E. D., Harmon, W. E., Niaudet, P., & Yoshikawa, N. (Eds.) (2009). Pediatric nephrology: 6th edition. In: Knoers, N., & Levtchenko, E. N. (2009). Nephrogenic diabetes insipidus. Springer-Verlag, Berlin, Heidelberg. Vol. 1. Pp. 1005–1018.

Balla, A., & Hunyady, L. (2019). Nephrogenic diabetes insipidus. Experientia, Supplementum, 111, 317–339.

Barker, D. J. P., Osmond, C., Golding, J., Kuh, D., & Wadsworth, M. E. J. (1989). Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. British Medical Journal, 298, 564–567.

Bichet, D. G. (2009). Nephrogenic diabetes insipidus: Vasopressin receptor defect. In: Lifton, R. P., Somlo, S., Giebsch, G., & Seldin, D. W. (Eds.). Genetic diseases of the kidney. Elsevier. Pp. 341–349.

Bichet, D. G., & Bockenhauer, D. (2016). Genetic forms of nephrogenic diabetes insipidus (NDI): Vasopressin receptor defect (X-linked) and aquaporin defect (autosomal recessive and dominant). Best Practice and Research. Clinical Endocrinology and Metabolism, 30(2), 263–276.

Bockenhauer, D., & Bichet, D. G. (2015). Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nature reviews. Nephrology, 11(10), 576–588.

Boyden, L. M., Choi, M., Choate, K. A., Nelson-Williams, C. J., Farhi, A., Toka, H. R., Tikhonova, I. R., Bjornson, R., Mane, S. M., Colussi, G., Lebel, M., Gordon, R. D., Semmekrot, B. A., Poujol, A., Välimäki, M. J., De Ferrari, M. E., Sanjad, S. A., Gutkin, M., Karet, F. E., Tucci, J. R., Stockigt, J. R., Keppler-Noreuil, K. M., Porter, C. C., Anand, S. K., Whiteford, M. L., Davis, I. D., Dewar, S. B., Bettinelli, A., Fadrowski, J. J., Belsha, C. W., Hunley, T. E., Nelson, R. D., Trachtman, H., Cole, T. R., Pinsk, M., Bockenhauer, D., Shenoy, M., Vaidyanathan, P., Foreman, J. W., Rasoulpour, M., Thameem, F., Al-Shahrouri, H. Z., Radhakrishnan, J., Gharavi, A. G., Goilav, B., & Lifton, R. P. (2012). Mutations in kelch-like 3 and cullin 3 cause hypertension and electrolyte abnormalities. Nature, 22, 482(7383), 98–102.

Cheek, D. B., & Perry, J. W. (1958). A salt wasting syndrome in infancy. Archives of Disease in Childhood, 33(169), 252–256.

Cheung, P. W., Nomura, N., Nair, A. V., Pathomthongtaweechai, N., Ueberdiek, L., Lu, H. A., Brown, D., & Bouley, R. (2016). EGF receptor inhibition by Erlotinib increases aquaporin 2-Mediated renal water reabsorption. Journal of the American Society of Nephrology, 27(10), 3105–3116.

Deen, P. M. T., Van Os, C. H., & Knoers, N. V. A. M. (2009). Nephrogenic diabetes insipidus: Aquaporin-2 defect. In: Lifton, R. P., Somlo, S., Giebsch, G., & Seldin, D. W. (Eds.). Genetic diseases of the kidney. Elsevier. Pp. 311–362.

Dolezel, Z., Starha, J., Novotna, D., & Dostalkova, D. (2004). Secondary pseudohypoaldosteronism in an infant with pyelonephritis. Bratislavské Lekárske Listy, 105(12), 435–437.

Elsas, L. J., & Rosenberg, L. E. (1969). Familial renal glycosuria: A genetic reappraisal of hexose transport by kidney and intestine. The Journal of Clinical Investigation, 48, 1845–1854.

Geary, D. F., & Schaefer, F. (Eds.). (2008). The kidney: Comprehensive pediatric nephrology. In: Bockenhauer, D. Diabetes Insipidus. MOSBY. Pp. 489–498.

Geller, D. S. (2005). Mineralocorticoid resistance. Clinical Endocrinology, 62(5), 513–520.

Geller, D. S., Zhang, J., Zennaro, M. C., Vallo-Boado, A., Rodriguez-Soriano, J., Furu, L., Haws, R., Metzger, D., Botelho, B., Karaviti, L., Haqq, A. M., Corey, H., Janssens, S., Corvol, P., & Lifton, R. P. (2006). Autosomal dominant pseudohypoaldosteronism type 1: Mechanisms, evidence for neonatal lethality, and phenotypic expression in adults. Journal of the American Society of Nephrology, 17(5), 1429–1436.

Gordon, R. D., Geddes, R. A., Pawsey, C. G., & O’Halloran, M. W. (1970). Hypertension and severe hyperkalaemia associated with suppression of renin and aldosterone and completely reversed by dietary sodium restriction. Australasian Annals of Medicine, 19(4), 287–294.

Jakobsson, В., & Berg, U. (1994). Effect of hydrochlorothiazide and indomethacine treatment оn renal function in nephrogenic diabetes insipidus. Acta Paediatrica, 83(5), 522–525.

Kavanagh, C., & Uy, N. S. (2019). Nephrogenic diabetes insipidus. Pediatric Clinics of North America, 66(1), 227–234.

Kerem, E., Bistritzer, T., Hanukoglu, A., Hofmann, T., Zhou, Z., Bennett, W., MacLaughlin, E., Barker, P., Nash, M., Quittell, L., Boucher, R., & Knowles, M. R. (1999). Pulmonary epithelial sodium-channel dysfunction and excess airway liquid in pseudohypoaldosteronism. The New England Journal of Medicine, 341(3), 156–162.

Khachadurian, A. K., & Khachadurian, L. A. (1964). The inheritance of renal glycosuria. American Journal of Human Genetics, 16, 189–194.

Kilchlechner, V., Koller, D. Y., Seidl, R., & Waldhauser, F. (1999). Treatment of nephrogenic diabetes insipidus with hydrochlorthiazide and amiloride. Archives of Disease in Childhood, 80, 548–552.

Klein, J. D., Fröhlich, O., Blount, M. A., Martin, C. F., Smith, T. D., & Sands, J. M. (2006). Vasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts. Journal of the American Society of Nephrology, 17(10), 2680–2686.

Klein, J. D., Wang, Y., Blount, M. A., Molina, P. A., LaRocque, L. M., Ruiz, J. A., & Sands, J. M. (2016). Metformin, an AMPK activator, stimulates the phosphorylation of aquaporin 2 and urea transporter A1 in inner medullary collecting ducts. American Journal of Physiology, Renal Physiology, 310(10), F1008–1012.

Knoers, N., & Monnens, L. A. (1990). Amiloride-hydrochlorothiazide versus indomethacin-hydrochlorothiazide in the treatment of nephrogenic diabetes insipidus. The Journal of Pediatrics, 117(3), 499–502.

Kuhnle, U. (1997). Pseudohypoaldosteronism: Mutation found, problem solved? Molecular and Cellular Endocrinology, 133(2), 77–80.

Kwon, T. H., Frøkiaer, J., Knepper, M. A., & Nielsen, S. (1998). Reduced AQP1, –2, and –3 levels in kidneys of rats with CRF induced by surgical reduction in renal mass. The American Journal of Physiology, 275(5), F724–741.

Lee, Y. W. (2013). Clinical and genetic analysis in a patient with primary renal glucosuria: Identification of a novel mutation in the SLC5A2 gene. Experimental and Therapeutic Medicine, 6(6), 1532–1534.

Lewis, A. A., Wolstenhome, G. E., & Reubi, F. (1954). Glucose titration in renal glycosuria. In: Lewis, A. A., & Wolstenhome, G. E. (Eds.). CIBA Foundation Symposium on the Kidney. Churchill, Ltd., London. Pp. 96–106.

Li, J. H., Chou, C. L., Li, B., Gavrilova, O., Eisner, C., Schnermann, J., Anderson, S. A., Deng, C. X., Knepper, M. A., & Wess, J. (2009). A selective EP4 PGE2 receptor agonist alleviates disease in a new mouse model of X-linked nephrogenic diabetes insipidus. The Journal of Clinical Investigation, 119(10), 3115–3126.

Li, S., Yang, Y., Huang, L., Kong, M., & Yang, Z. (2019). A novel compound heterozygous mutation in SLC5A2 contributes to familial renal glucosuria in a Chinese family, and a review of the relevant literature. Molecular Medicine Reports, 19(5), 4364–4376.

Lojman, J., Cygin, A. N., & Sarkisjan, A. A. (Еds.). (2010). Detskaja nefrologija [Children’s nephrology]. Litterra, Moscow (in Russian).

Maruyama, K., Watanabe, H., & Onigata, K. (2002). Reversible secondary pseudohypoaldosteronism due to pyelonephritis. Pediatric Nephrology, 17(12), 1069–1070.

Miranda, C. A., Lee, J. W., Chou, C. L., & Knepper, M. A. (2014). Tolvaptan as a tool in renal physiology. American Journal of Physiology, Renal Physiology, 306(3), F359–366.

Morello, J. P., & Bichet, D. G. (2001). Nephrogenic diabetes insipidus. Annual Review of Physiology, 63, 607–630.

Ocal, G., Berberoğlu, M., Adiyaman, P., Cetinkaya, E., Ekim, M., Aycan, Z., & Evliyaoğlu, O. (2001). Osteopetrosis, renal tubular acidosis without urinary concentration abnormality, cerebral calcification and severe mental retardation in three Turkish brothers. Journal of Pediatric Endocrinology and Metabolism, 14(9), 1671–1677.

Oemar, B. S., Byrd, D. J., & Brodehl, J. (1987). Complete absence of tubular glucose reabsorption: A new type of renal glucosuria (type 0). Clinical Nephrology, 27, 156–160.

Osmanov, I. M., Zaharova, I. N., Kol’be, O. B., Mumladze, J. B., Bekmurzaeva, G. B., & Tambieva, E. V. (2018). Pervichnye tubulopatii [Primary tubulopathies]. Rossiyskiy Vestnik Perinatologii i Pediatrii, 63(1), 81–89 (in Russian).

Paver, W. K., & Pauline, G. J. (1964). Hypertension and hyperpotassaemia without renal disease in a young male. The Medical Journal of Australia, 22(2), 305–306.

Prié, D. (2014). Familial renal glycosuria and modifications of glucose renal excretion. Diabetes and Metabolism, 6(Suppl. 1), 12–16.

Riepe, F. G., Finkeldei, J., de Sanctis, L., Einaudi, S., Testa, A., Karges, B., Peter, M., Viemann, M., Grötzinger, J., Sippell, W. G., Fejes-Toth, G., & Krone, N. (2006). Elucidating the underlying molecular pathogenesis of NR3C2 mutants causing autosomal dominant pseudohypoaldosteronism type 1. The Journal of Clinical Endocrinology and Metabolism, 91(11), 4552–4561.

Santer, R., & Calado, J. (2010). Familial renal glucosuria and SGLT2: From a mendelian trait to a therapeutic target. Clinical Journal of the American Society of Nephrology, 5(1), 133–141.

Schaedel, C., Marthinsen, L., Kristoffersson, A. C., Kornfält, R., Nilsson, K. O., Orlenius, B., & Holmberg, L. (1999). Lung symptoms in pseudohypoaldosteronism type 1 are associated with deficiency of the alpha-subunit of the epithelial sodium channel. The Journal of Pediatrics, 135(6), 739–745.

Schofer, O., Beetz, R., Bohl, J., Bornemann, A., Oepen, J., & Spranger, J. (1990). Mental retardation syndrome with renal concentration deficiency and intracerebral calcification. European Journal of Pediatrics, 149(7), 470–474.

Smіjan, O. І., Romanjuk, O. K., Binda, T. P., Sіchnenko, P. І., Gorban’, V. A., & Saj, V. P. (2010). Klіnіchnij vipadok psevdogіpoal’dosteronіzmu [Clinical case of pseudohypoaldosteronism]. Vіsnik Sums’kogo Derzhavnogo Universytetu, Serіja Medicina, 2, 158–162 (in Ukrainian).

Urakami, T., Yoda, M., Yoshida, K., Mine, Y., Aoki, M., & Suzuki, J. (2018). Renal glucosuria in schoolchildren: Clinical characteristics. Pediatrics International, 60(1), 35–40.

Vehaskart, V. M. (2007). Developmental origins of adult hypertension: New insights into the role of the kidney. Pediatric Nephrology, 22, 490–495.

Wright, E. M., Hirayama, B. A., & Loo, D. F. (2007). Active sugar transport in health and disease. Journal of Internal Medicine, 261(1), 32–43.

Yu, L., Hou, P., Lv, J. C., Liu, G. P., & Zhang, H. (2015). Novel SLC5A2 variants contribute to renal glucosuria in Chinese families: Abnormal expression and dysfunction of variant SLC5A2. Human Mutation, 36(1), 79–86.

Zennaro, M. C., & Lombès, M. (2004). Mineralocorticoid resistance. Trends in Endocrinology and Metabolism, 15(6), 264–270.

How to Cite
Ryznychuk, M. O., Pishak, V. P., Bacyuk-Ponych, N. V., & Pishak, O. V. (2021). Hereditary tubulopathies accompanying polyuia . Regulatory Mechanisms in Biosystems, 12(3), 445-451.

Most read articles by the same author(s)