Effect of Cameraria ohridella feeding on Aesculus hippocastanum photosynthesis

  • K. K. Holoborodko Oles Honchar Dnipro National University
  • O. V. Seliutina Oles Honchar Dnipro National University
  • I. A. Ivanko Oles Honchar Dnipro National University
  • A. A. Alexeyeva Oles Honchar Dnipro National University
  • M. V. Shulman Oles Honchar Dnipro National University
  • O. Y. Pakhomov Oles Honchar Dnipro National University
Keywords: invasive species; lepidopteran miners; plant ontogenesis; chlorophyll; chlorophyll fluorescence; plant photosynthetic apparatus.


The complex of invasive species of phytophagous insects that can adapt to novel living conditions is constantly increasing. The ecological effect of their vital activity in the new environment is almost impossible to predict. As a result, invasions undesirable in the economic sense are often observed. The horse -chestnut leaf miner (Cameraria ohridella Deschka & Dimič, 1986, Gracillariidae) is one of these problematic invader species in the introduced range of the horse chestnut (Aesculus hippocastanum (Linnaeus, 1753), Sapindaceae). We studied the effect of C. ohridella on the state of the photosynthetic apparatus in Ae. hippocastanum leaves. Photosynthesis is the one of the processes most vulnerable to stress factors, so information about the state of photosynthetic apparatus in a plant under the influence of phytophage feeding obtained with fluorescence analysis can be significant. The feeding effect of C. ohridella caterpillars on the functional state and activity of Ae. hippocastanum photosynthetic apparatus was studied. We studied critical parameters of chlorophyll fluorescence induction reflecting the effect of a single C. ohridella generation (feeding the caterpillar for the five stages of this species’ development) on the functional links of the photosystem II in Ae. hippocastanum leaves. The data obtained show a decrease in PS II quantum efficiency (inhibition of photosynthetic activity) in the leaves from different parts of the crown; it suggests the destructive effect of C. ohridella caterpillar feeding on Ae. hippocastanum photosynthetic apparatus. Values of all key parameters of chlorophyll fluorescence indication evidence inhibition of photophysical and photochemical processes of photosynthesis and impaired coherence of Calvin cycle reactions. Study of the feeding effect of C. ohridella caterpillars on the efficiency of the main enzyme in the Calvin cycle (which closely correlates with the coefficient of fluorescence induction that characterizes the efficiency of dark photosynthetic processes) showed a significant decrease in its activity in the leaves of both the illuminated and shaded parts of the crown. Our study has shown that the method of chlorophyll fluorescence induction allows one to determine the general state of a plant in an express regime by evaluating the main process of plant life as photosynthesis. Analysis of chlorophyll fluorescence parameters is a powerful and effective tool for determining the effect of phytophages on the plant body. The obtained data allow us to apply the method of analyzing chlorophyll fluorescence induction in practice to establish the physiological state of tree flora in forests and garden farms.


Akіmov, I. A., Zerova, M. D., Gershenson, Z. S., Narol'skij, I. V., Kohanec, A. M., & Sviridov, S. V. (2003). Pervoe soobshhenie o pojavlenii v Ukraine kashtanovoj minirujushhej moli Cameraria ohridella Desch. & Dem. (Lepidoptera, Gracillariidae) na konskom kashtane obyknovennom [The first report on the appearance in Ukraine of the chestnut mining moth Cameraria ohridella Desch. & Dem. (Lepidoptera, Gracillariidae) on common horse chestnuts]. Vesnіk of Zoology, 37(1), 3–12 (in Russian).

Alonso, L., Van Wittenberghe, S., Amorós-López, J., Vila-Francés, J., Gómez-Chova, L., & Moreno, J. (2017). Diurnal cycle relationships between passive fluorescence, PRI and NPQ of vegetation in a controlled stress experiment. Remote Sensing, 9(8), 770.

Brygadyrenko, V. V. (2015). Influence of tree crown density and density of the herbaceous layer on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 23(2), 134–148.

Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 240–248.

Brygadyrenko, V. V., & Nazimov, S. S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. Zookeys, 481, 57–68.

Chen, J., Burke, J. J., & Xin, Z. (2018). Chlorophyll fluorescence analysis revealed essential roles of FtsH11 protease in regulation of the adaptive responses of photosynthetic systems to high temperature. BMC Plant Biology, 18(1), 11.

Chen, Х., Mo, X., Hu, S., & Liu, S. (2019). Relationship between fluorescence yield and photochemical yield under water stress and intermediate light conditions. Journal of Experimental Botany, 70(1), 301–313.

Chitband, А. А., Ghorbani, R., Rashed Mohassel, М. Н., & Nabizade, М. (2017). The effect of sugar beet broadleaf herbicides on fluorescence induction curves in Amaranthus retroflexus L. and Portulaca oleracea L. Notulae Scientia Biologicae, 9(3), 433–442.

da Silva, J. M., Figueiredo, А., Cunha, J., Eiras-Dias, J. E., Silva, S., Vanneschi, L., & Mariano, P. (2020). Using rapid chlorophyll fluorescence transients to classify Vitis genotypes. Plants, 9, 174.

Duarte, В., Pedro, S., Marques, J. C., Adão, H., & Caçador, I. (2017). Zostera noltii development probing using chlorophyll a transient analysis (JIP-test) under field conditions: Integrating physiological insights into a photochemical stress index. Ecological Indicators, 76, 219–229.

Elahifard, Е., Ghanbari, А., Mohassel, М. Н. R., Zand, Е., Kakhki, M. А., & Abbaspoor, М. (2013). Measuring chlorophyll fluorescence parameters for rapid detection of ametryn resistant junglerice [Echinochloa colona (L.) Link.]. Plant Knowledge Journal, 2(2), 76–82.

Essemine, J., Govindachary, S., Joly, D., Ammar, S., Bouzid, S., & Carpentiera, R. (2012). Effect of moderate and high light on photosystem II function in Arabidopsis thaliana depleted in digalactosyl-diacylglycerol. Biochimica et Biophysica Acta – Bioenergetics, 1817(8), 1367–1373.

Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.

Gorbunov, M. Y., & Falkowski, P. G. (2021). Using chlorophyll fluorescence kinetics to determine photosynthesis in aquatic ecosystems. Limnology and Oceanography, 66(1), 1–13.

Govindjee, G. (2004). Chlorophyll a fluorescence: A bit of basics and history. In: Papageorgiou, G. C., & Govindjee, G. (Eds.). Chlorophyll a fluorescence: A signature of photosynthesis. Springer, Dordrecht. Pp. 1–41.

Holoborodko, K. K., Marenkov, O. M., Gorban, V. A., & Voronkova, Y. S. (2016). The problem of assessing the viability of invasive species in the conditions of the steppe zone of Ukraine. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 466–472.

Huang, Y., Thomson, S. J., Molin, W. T., Reddy, K. N., & Yao, Н. (2012). Early detection of soybean plant injury from glyphosate by measuring chlorophyll reflectance and fluorescence. Journal of Agricultural Science, 4(5), 117–124.

Huliaieva, H., Tokovenko, I., Maksin, V., Kaplunenko, V., & Kalinichenko, A. (2018). Effect of nanoaquacitrates on physiological parameters of Fodder galega infected with phytoplasma. Ecological Chemistry and Engineering S, 25(1), 153–168.

Inghilesi, A. F., Mazza, G., Cervo, R., Gherardi, F., Sposimo, P., Tricarico, E., & Zapparoli, M. (2013). Alien insects in Italy: Comparing patterns from the regional to European level. Journal of Insect Science, 13, 1–13.

Kalaji, H. M., Jajoo, А., Oukarroum, А., Brestic, М., Zivcak, М., Samborska, І. А., Cetner, M. D., Łukasik, І., Goltsev, V., & Ladle, R. J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum, 38(102), 1–11.

Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., Li, P., Losciale, P., Mishra, V. K., Misra, A. N., Nebauer, S. G., Pancaldi, S., Penella, C., Pollastrini, M., Suresh, K., Tambussi, E., Yanniccari, M., Zivcak, M., Cetner, M. D., Samborska, I. A., Stirbet, A., Olsovska, K., Kunderlikova, K., Shelonzek, H., Rusinowski, S., & Bąba, W. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132(1), 13–66.

Kargar, M., Ghorbani, R., Rashed Mohassel, M. H., & Rastgoo, M. (2019). Chlorophyl fluorescence – a tool for quick identification of Accase and ALS inhibitor herbicides performance. Planta Daninha, 37, e019166813.

Kautsky, H., & Hirsch, A. (1931). Neue Versuche zur Kohlensäureassimilation. Naturwissenschaften, 19, 964.

Kirichenko, N., Augustin, S., & Kenis, M. (2019). Invasive leafminers on woody plants: A global review of pathways, impact, and management. Journal of Pest Science, 92(9), 1–14.

Kyrychenko, A. M., Hrynchuk, K. V., & Antipov, I. O. (2019). Vplyv virusiv rodyny Potyviridae na funktsional’nyy stan i aktyvnist’ fotosyntetychnoho aparatu bobovykh [The effect of viruses of the family Potyviridae on the functional state and activity of the photosynthetic apparatus of legumes]. Agroecological Journal, 2, 62–71 (in Ukrainian).

Lopez-Vaamonde, С., Agassiz, D., Augustin, S., De Prins, J., De Prins, W., Gomboc, S., Ivinskis, P., Karsholt, O., Koutroumpas, A., Kouttoumpa, F., Laštůvka, Z., Marabuto, E., Olivella, E., Przybylowicz, L., Roques, A., Ryrholm, N., Šefrová, H., Šima, P., Sims, P., Sinev, S., Skulev, B., Tomov, R., Zilli, A., & Lees, D. (2010). Chapter 11. Lepidoptera. In: Roques, A. (Ed.). Alien terrestrial arthropods of Europe. BioRisk, 4(2), 603–668.

Martinazzo, E. G., Ramm, А., & Bacarin, M. A. (2012). The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica. Brazilian Journal of Plant Physiology, 24(4), 237–246.

Matorin, D. N., Timofeeva, N. P., Sindalovskaya, M. L., Shidlovskaya, N. A., Todorenkoa, D. A., & Alekseev, A. A. (2019). Chlorophyll fluorescence of summer phytoplankton in reservoirs of the Zvenigorod Biological Station of Moscow State University. Biophysics, 64(6), 858–865.

Pérez-Bueno, M. L., Pineda, M., & Barón, M. (2019). Phenotyping plant responses to biotic stress by chlorophyll fluorescence іmaging. Frontiers Plant Science, 10, 1135.

Ruban, А. V. (2016). Nonphotochemical chlorophyll fluorescence quenching: Mechanism and effectiveness in protecting plants from photodamage. Plant Physiology, 170, 1903–1916.

Rühle, T., Reiter, В., & Leister, D. (2018). Chlorophyll fluorescence video imaging: A versatile tool for identifying factors related to photosynthesis. Frontiers Plant Science, 9, 55.

Scognamiglio, V., Antonacci, A., Arduini, F., Moscone, D., Campos, V. R. E., Fraceto, L. F., & Palleschi, G. (2019). An eco-designed paper-based algal biosensor for nanoformulated herbicide optical detection. Journal of Hazardous Materials, 373, 483–492.

Shupranova, L. V., Holoborodko, K. K., Seliutina, O. V., & Pakhomov, O. Y. (2019). The influence of Cameraria ohridella (Lepidoptera, Gracillariidae) on the activity of the enzymatic antioxidant system of protection of the assimilating organs of Aesculus hippocastanum in an urbogenic environment. Biosystems Diversity, 27(3), 238–243.

Starodub, N. F., Guidotti, M., Shavanova, K. E., Taran, M. V., & Son’ko, R. V. (2015). Ways for the control of the total toxicity of environmental objects and their instrumental providing. Biosensors and Bioelectronics, 6, 180.

Starychenko, V., Golyk, L., & Patyka, M. (2016). Fluorescence of chlorophyll pigment in leaves of soft winter wheat annual at different stages of organogenesis. Bulletin of Agricultural Science, 9, 25–29.

Tseng, Y.-C., & Chu, S.-W. (2017). High spatio-temporal-resolution detection of chlorophyll fuorescence dynamics from a single chloroplast with confocal imaging fuorometer. Plant Methods, 13, 43.

Voronkova, Y. S., Marenkov, O. M., & Нoloborodko, K. K. (2018). Liver antioxidant system of the Prussian carp and pumpkinseed as response to the environmental change. Ukrainian Journal of Ecology, 1(8), 749–754.

How to Cite
Holoborodko, K. K., Seliutina, O. V., Ivanko, I. A., Alexeyeva, A. A., Shulman, M. V., & Pakhomov, O. Y. (2021). Effect of Cameraria ohridella feeding on Aesculus hippocastanum photosynthesis . Regulatory Mechanisms in Biosystems, 12(2), 346-352. https://doi.org/10.15421/022147