Effect of extract from common oat on the antioxidant activity and fatty acid composition of the muscular tissues of geese

  • O. O. Danchenko Dmytro Motornyi Tavria State Agrotechnological University
  • Y. V. Nicolaeva Bogdan Khmelnitsky Melitopol State Pedagogical University
  • O. I. Koshelev Bogdan Khmelnitsky Melitopol State Pedagogical University
  • M. M. Danchenko Dmytro Motornyi Tavria State Agrotechnological University
  • O. V. Yakoviichuk Bogdan Khmelnitsky Melitopol State Pedagogical University
  • T. I. Halko Bogdan Khmelnitsky Melitopol State Pedagogical University
Keywords: stomach muscles; cardiac muscle; physiological pressure; level of correlation of changes in fatty acid composition; pterylogaphic parameters

Abstract

Among natural antioxidants, increasing attention is being drawn to avenanthramides - phenolic compounds of the common oat Avena sativa (Linnaeus, 1753). Research has shown that avenanthramides have much higher antioxidant activity than well-known bioflavanoids. Currently, a great deal of work is being conducted on the structure of these compounds and mechanisms of their effect on the organism of humans and animals. We explored the specifics of the influence of aqueous extract from A. satíva on the antioxidant activity and fatty acid composition of lipids of histologically similar tissues of geese with different levels of aerobicity (muscles of the stomach and cardiac muscle), dynamics of the birds’ live weight and pterylographic parameters under physiological loading by the development of contour and juvenile feathers. The addition of extract of oat to the diet of geese during growth of feathers was observed to increase the antioxidant activity of their tissues. Physiological loading related to the development of contour feathers in the examined tissues of geese significantly weakens as a result of selective inhibition of synthesis of unsaturated fatty acids, especially oleic acid, the content of which in 28-day old geese of the experimental group decreased by 31.7 in the cardiac muscle and 46.8 times in the stomach, compared with the control. Further changes in fatty acid composition were characterized by lower number of differences between the control and experimental groups. Increase in antioxidant activity in these tissues during development of juvenile feathers (day 49) occurs as a result of activation of alternative mechanisms of antioxidative protection, which take place with no significant changes in fatty acid composition. Furthermore, we determined that in the stomach and cardiac muscles of geese, the action of extract from common oat activated mechanisms of antioxidative protection, which increased the level of correlation between the changes in fatty acid composition. The study confirmed that the extract caused not only significant increase in the weight of geese at the end of the experiment, but also improved their pterylographic parameters. Therefore, it is practical to conduct similar studies on wild species of birds grown for hunting, because this process of development of feathers, particularly for such species of birds, is essential.

References

Aldubayan, M. A., Elgharabawy, R. M., Ahmed, A. S., & Tousson, E. (2019). Antineoplastic activity and curative role of avenanthramides against the growth of ehrlich solid tumors in mice. Oxidative Medicine and Cellular Longevity, 2019, 1–12.

Antonini, E., Diamantini, G., & Ninfali, P. (2017). The effect of mechanical processing on avenanthramide and phenol levels in two organically grown Italian oat cultivars. Journal of Food Science and Technology, 54(8), 2279–2287.

Brand, W., Boersma, M. G., Bik, H., Hoek-van den Hil, E. F., Vervoort, J., Barron, D., Meinl, W., Glatt, H., Williamson, G., van Bladeren, P. J., & Rietjens, I. M. C. M. (2010). Phase II metabolism of hesperetin by individual UDP-glucuronosyltransferases and sulfotransferases and rat and human tissue samples. Drug Metabolism and Disposition, 38(4), 617–625.

Chen, C., Li, T., Chen, Z., Wang, L., & Luo, X. (2020). Absorption rates and mechanisms of avenanthramides in a caco-2 cell model and their antioxidant activity during absorption. Journal of Agricultural and Food Chemistry, 68(8), 2347–2356.

Chen, C., Wang, L., Wang, R., Luo, X., Li, Y., Li, J., & Chen, Z. (2018). Phenolic contents, cellular antioxidant activity and antiproliferative capacity of different varieties of oats. Food Chemistry, 239, 260–267.

Christensen, R. (2018). Analysis of variance, design, and regression. Chapman and Hall/CRC, London.

Dalla Valle, A., Vertongen, P., Spruyt, D., Lechanteur, J., Suain, V., Gaspard, N., Brion, J.-P., Gangji, V., & Rasschaert, J. (2019). Induction of stearoyl-coa 9-desaturase 1 protects human mesenchymal stromal cells against palmitic acid-induced lipotoxicity and inflammation. Frontiers in Endocrinology, 10, 726.

Damiano, F., Giannotti, L., Gnoni, G. V., Siculella, L., & Gnoni, A. (2019). Quercetin inhibition of SREBPs and ChREBP expression results in reduced cholesterol and fatty acid synthesis in C6 glioma cells. The International Journal of Biochemistry and Cell Biology, 117, 105618.

Danchenko, O. O. (2009). Riven’ uzgodzhenosti pokaznykiv pro-antyoksydantnoji rivnovagy pechinky gusej jak kryterij poshkodzhujuchogo vplyvu tehnologichnyh chynnykiv [The level of consistency of pro-antioxidant balance of goose liver as a criterion for the damaging effects of technological factors]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, Veterinary Sciences, 11(3), 26–34 (in Ukrainian).

Danchenko, O. O., Pashhenko, Y. P., Danchenko, N. M., & Zdorovceva, L. M. (2012). Mehanizmy pidtrymky prooksydantno-antyoksydantnoji rivnovagy v tkanynah pechinky gusej v umovah gipo- i giperoksiji [Mechanisms of support prooxidant-antioxidant balance in the liver tissues of geese in hypo- and hyperoxia]. Ukrainskyi Biokhimichnyi Zhurnal, 84(6), 109–114 (in Ukrainian).

Danchenko, O., Zdorovtseva, L., Vishchur, O., Koshelev, О., Halko, T., Danchenko, M., Nikolayeva, Y., & Mayboroda, D. (2020). Extract of oats as a modulator of fatty acid composition of geese tissues in the conditions of physiological stress. Biologija, 66(1), 27–34.

Danchenko, О. О., Kalytka, V. V., & Kolesnic, D. M. (2003). Ontogenetychni osoblyvosti zmin zhyrnokyslotnogo skladu lipidiv pechinky gusej jak golovnogo substratu peroksydaciji [Ontogenic characteristics of changes in fatty acid composition of the liver lipids as a main substrate for peroxidation in geese]. Ukrainskyi Biokhimichnyi Zhurnal, 75(3), 124–129 (in Ukrainian).

De Bruijn, W. J. C., van Dinteren, S., Gruppen, H., & Vincken, J.-P. (2019). Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chemistry, 277, 682–690.

Fedorovich, E. I., & Zaplatinsky, V. S. (2015). Suchasnyj stan ta perspektyvy rozvytku gusivnyctva Ukrajiny [Current situation and perspectives of goose farming in Ukraine]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, Veterinary Sciences, 17(3), 322–329 (in Ukrainian).

Gula, N. M., & Margitich, V. M. (2009). Zhyrni kysloty ta jih pohidni pry patologichnyh stanah [Fatty acids and their derivatives in pathological conditions]. Naukova Dumka, Kyiv (in Ukrainian).

Hanikoglu, A., Kucuksayan, E., Hanikoglu, F., Ozben, T., Menounou, G., Sansone, A., Chatgilialoglu, C., Di Bella, G., & Ferreri, C. (2020). Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes. Canadian Journal of Physiology and Pharmacology, 98(3), 131–138.

Ichihara, K., & Fukubayashi, Y. (2010). Preparation of fatty acid methyl esters for gas-liquid chromatography. Journal of Lipid Research, 51(3), 635–640.

Ionov, I. A., Shapovalov, S. O., Dolgaya, M. N., Akhtyrsky, A. V., Zozulya, Y. A., Komisova, T. E., & Kostyuk, I. A. (2011). Opredelenie malonovogo dial’degida v tkanjah i organah [Determination of malondialdehyde in tissues and organs]. In: Kriterii i metody kontrolja metabolizma v organizme zhivotnyh i ptic [Criteria and methods for controlling metabolism in animals and birds]. Institute of Animal Husbandry National Academy of Agrarian Science, Kharkov. Pp. 224–225 (in Russian).

Ivko, I. I., Mykytiuk, D. M., Melnyk, V. O., Riabinina, O. V., & Bratyshko, N. I. (2009). Rekomendatsiji shchodo spriamovanoho vyroshchuvannia, utrymannia i vidhodivli vodoplavnoi ptytsi [Recommendations for targeted breeding, keeping and fattening of waterfowl]. Institute of Poultry National Academy of Agrarian Science, Birky (in Ukrainian).

Jágr, M., Dvořáček, V., Čepková, P. H., & Doležalová, J. (2020). Comprehensive analysis of oat avenanthramides using hybrid quadrupole – Orbitrap mass spectrometry: Possible detection of new compounds. Rapid Communications in Mass Spectrometry, 34(10), e8718.

Landberg, R., Sunnerheim, K., & Dimberg, L. H. (2020). Avenanthramides as lipoxygenase inhibitors. Heliyon, 6(6), e04304.

Ltaif, M., Gargouri, M., Magné, C., Feki, A., & Soussi, A. (2020). Protective effects of Avena sativa against oxidative stress‐induced kidney damage resulting from an estrogen deficiency in ovariectomized Swiss mice model. Journal of Food Biochemistry, 44(6), e13205.

Meydani, M. (2009). Potential health benefits of avenanthramides of oats. Nutrition Reviews, 67(12), 731–735.

Montilla-Bascón, G., Broeckling, C. D., Hoekenga, O. A., Prats, E., Sorrells, M., & Isidro-Sánchez, J. (2017). Chromatographic methods to evaluate nutritional quality in oat. Methods in Molecular Biology, 1536, 115–125.

National Research Council (1994). Nutrient requirements of poultry. Ninth edition. The National Academies Press, Washington.

Nie, L., Wise, M. L., Peterson, D. M., & Meydani, M. (2006). Avenanthramide, a polyphenol from oats, inhibits vascular smooth muscle cell proliferation and enhances nitric oxide production. Atherosclerosis, 186(2), 260–266.

Pridal, A. A., Böttger, W., & Ross, A. B. (2018). Analysis of avenanthramides in oat products and estimation of avenanthramide intake in humans. Food Chemistry, 253, 93–100.

Rostova, N. S. (2002). Korreljacii: Struktura i izmenchivost’ [Correlations: Structure and variability]. Publishing house of Saint Petersburg State University, Saint Petersburg (in Russian).

Singh, R., De, S., & Belkheir, A. (2013). Avena sativa (oat), a potential neutraceutical and therapeutic agent: An overview. Critical Reviews in Food Science and Nutrition, 53(2), 126–144.

Sobolev, O. I., Gutyj, B. V., Sobolievа, S. V., Shaposhnik, V. М., Sljusarenko, A. А., Stoyanovskyy, V. G., Kamratska, O. І., Karkach, P. M., Bilkevych, V. V., Stavetska, R. V., Babenko, O. I., Bushtruk, M. V., Starostenko, I. S., Klopenko, N. I., Korol’-Bezpala, L. P., & Bezpalyi, I. F. (2019). Digestibility of nutrients by young geese for use of lithium in the composition of fodder. Ukrainian Journal of Ecology, 9(1), 1–6.

Soycan, G., Schär, M. Y., Kristek, A., Boberska, J., Alsharif, S. N. S., Corona, G., Shewry, P. R., & Spencer, J. P. E. (2019). Composition and content of phenolic acids and avenanthramides in commercial oat products: Are oats an important polyphenol source for consumers? Food Chemistry, 10(3), 100047.

Sumayya, P. C., Babu, G. M., & Muraleedharan, K. (2021). Quantum chemical investigation of the antiradical property of avenanthramides, oat phenolics. Heliyon, 7(2), e06125.

Tian, W. X. (2006). Inhibition of fatty acid synthase by polyphenols. Current Medicinal Chemistry, 13(8), 967–977.

Vauzour, D., Tejera, N., O’Neill, C., Booz, V., Jude, B., Wolf, I. M. A., Rigby, N., Silvan, J. M., Curtis, P. J., Cassidy, A., de Pascual-Teresa, S., Rimbach, G., & Minihane, A. M. (2015). Anthocyanins do not influence long-chain n-3 fatty acid status: Studies in cells, rodents and humans. The Journal of Nutritional Biochemistry, 26(3), 211–218.

Walsh, J., Haddock, J., Blumberg, J. B., McKay, D. L., Wei, X., Dolnikowski, G., & Chen, C.-Y. O. (2017). Identification of methylated metabolites of oat avenanthramides in human plasma using UHPLC QToF-MS. International Journal of Food Sciences and Nutrition, 69(3), 377–383.

Yakoviichuk, O., Danchenko, O., Kurtyak, B., Nikolaeva, Y., Fedorko, A., & Halko, T. (2019). Ontogenetic features of redox reactions in the myocardium of geese. Biologija, 64(4), 259–266.

Zazharska, N., Boyko, O., & Brygadyrenko, V. (2018). Influence of diet on the productivity and characteristics of goat milk. Indian Journal of Animal Research, 52(5), 711–717.

Zdorovtseva, L. М., Khromishev, V. О., & Danchenko, О. О. (2012). Zhyrnokyslotnyj sklad lipidiv mozku i sercja gusej v umovah gipo- i giperoksiji [Fatty acid composition of brain and heart lipids of geese in hypo- and hyperoxia]. Biological Bulletin of Bogdan Khmelnitsky Melitopol State Pedagogical University, 2(3), 9–18 (in Ukrainian).

Zhang, J. S., Lei, J. P., Wei, G. Q., Chen, H., Ma, C. Y., & Jiang, H. Z. (2016). Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review. Pharmaceutical Biology, 54(9), 1919–1925.

Zhang, T., Shao, J., Gao, Y., Chen, C., Yao, D., Chu, Y. F., Johnson, J., Kang, C., Yeo, D., & Ji, L. L. (2017). Absorption and elimination of oat avenanthramides in humans after acute consumption of oat cookies. Oxidative Medicine and Cellular Longevity, 2017, 2056705.

Published
2021-05-05
How to Cite
Danchenko, O. O., Nicolaeva, Y. V., Koshelev, O. I., Danchenko, M. M., Yakoviichuk, O. V., & Halko, T. I. (2021). Effect of extract from common oat on the antioxidant activity and fatty acid composition of the muscular tissues of geese . Regulatory Mechanisms in Biosystems, 12(2), 307-314. https://doi.org/10.15421/022141