Staphylococcus aureus and S. epidermidis in biological systems of hospital environment: Antibiotic resistance patterns in regions of Ukraine

  • A. V. Berezhna Kharkiv National Medical University
  • V. O. Tertyshnyi SI Poltava Oblast Laboratory Center of the MoH of Ukraine
  • V. I. Makarova Kharkiv National Medical University
  • T. O. Chumachenko Kharkiv National Medical University
Keywords: healthcare-associated infections; catheter-related bloodstream infections; biofilms; infection control; bacteremia; genomic variability.


Staphylococcus bacteria are ubiquitous and often circulate in the biological systems of the hospital environment. Staphylococci have developed antibiotic resistance mechanisms resulting in a significant medical and economic burden to the healthcare system. The goal of our research was to conduct a comparative analysis of resistance to antibiotics in S. aureus and S. epidermidis isolates found in surgical hospitals in Kharkiv and Poltava regions. In 2013 through 2019, 151,015 and 98,754 tests were made by disc-diffusion method to identify the sensitivity in the S. aureus strains to antibiotics in Kharkiv and Poltava regions respectively. In 2013–2015, 15,589 tests were made in Kharkiv region to identify antibiotics sensitivity in S. epidermidis strains. Comparison of antibiotic resistance of the S. aureus strains in Kharkiv and Poltava regions was performed using the Pearson Chi-square test (χ2) and Fisher’s exact test. The proportion of S. aureus strains resistant to penicillins, cephalosporins, carbapenems, aminoglycosides, and macrolides was higher in Kharkiv region in terms of statistical validity than in Poltava region. Overall, the proportion of S. aureus strains resistant to lincozamids, tetracycline antibiotics, and fluoroquinolones in Poltava region was higher in terms of statistical validity than in Kharkiv region. An analysis of resistance of S. aureus strains to linezolid demonstrated that in Poltava region the proportion of resistant microorganisms was higher in terms of statistical validity in 2013–2014 and in 2016–2018. In Kharkiv region, in 2013 and in 2014, 96.3% and 89.1% of isolated strains of S. aureus respectively, were resistant to vancomycin. In 2019, more than a quarter of the located isolates (26.6%) in Poltava region were resistant to this antibiotic. The analysis of the dynamic of resistance in S. epidermidis isolates demonstrated that in 2015 nearly half of the isolates located in Kharkiv region were insensitive to penicillin antibiotics. Between 2013 and 2015, the spread of resistance to cephalosporins, aminoglycosides, macrolides, and fluoroquinolones among the S. epidermidis isolates noticeably increased. When S. epidermidis resistance to vancomycin was analyzed, a decrease in the proportion of resistant strains from 88.0% in 2013 to 8.7% in 2015 was noted. A promising direction for further research is the creation of passports of microorganism resistance in the regions and various health-care settings, as well as the creation of a unified national database network on microorganism resistance using modern methodologies for determining the phenotypes and genotypes of microorganisms.


Aghdassi, S., Schröder, C., Gruhl, D., Gastmeier, P., & Salm, F. (2019). Point prevalence survey of peripheral venous catheter usage in a large tertiary care university hospital in Germany. Antimicrobial Resistance and Infection Control, 8(1), 15.

Archer, G., & Tenenbaum, M. (1980). Antibiotic-resistant Staphylococcus epidermidis in patients undergoing cardiac surgery. Antimicrobial Agents and Chemotherapy, 17(2), 269–272.

Bauer, A., Kirby, W., Sherris, J., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.

Brown, A., Leech, J., Rogers, T., & McLoughlin, R. (2014). Staphylococcus aureus colonization: Modulation of host immune response and impact on human vaccine design. Frontiers in Immunology, 4, 507.

Brusselaers, N., Vogelaers, D., & Blot, S. (2011). The rising problem of antimicrobial resistance in the intensive care unit. Annals of Intensive Care, 1(1), 47.

Canadian Nosocomial Infection Surveillance Program (2020). Healthcare-associated infections and antimicrobial resistance in Canadian acute care hospitals, 2014–2018. Canada Communicable Disease Report, 46(5), 99–112.

Chabi, R., & Momtaz, H. (2019). Virulence factors and antibiotic resistance properties of the Staphylococcus epidermidis strains isolated from hospital infections in Ahvaz, Iran. Tropical Medicine and Health, 47(1), 56.

Cherifi, S., Byl, B., Deplano, A., Nagant, C., Nonhoff, C., Denis, O., & Hallin, M. (2014). Genetic characteristics and antimicrobial resistance of Staphylococcus epidermidis isolates from patients with catheter-related bloodstream infections and from colonized healthcare workers in a Belgian hospital. Annals of Clinical Microbiology and Antimicrobials, 13(1), 20.

Clinical and Laboratory Standards Institute (2014). Performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24. Wayne, Pennsylvania.

Conlan, S., Mijares, L., NISC Comparative Sequencing Program, Becker, J., Blakesley, R., Bouffard, G., Brooks, S., Coleman, H., Gupta, J., Gurson, N., Park, M., Schmidt, B., Thomas, P., Otto, M., Kong, H., Murray, P., & Segre, J. (2012). Staphylococcus epidermidis pan-genome sequence analysis reveals diversity of skin commensal and hospital infection-associated isolates. Genome Biology, 13(7), R64.

Costerton, J., Montanaro, L., & Arciola, C. (2005). Biofilm in implant infections: Its production and regulation. The International Journal of Artificial Organs, 28(11), 1062–1068.

Deurenberg, R., & Stobberingh, E. (2008). The evolution of Staphylococcus aureus. Infection, Genetics and Evolution, 8(6), 747–763.

Deurenberg, R., Vink, C., Kalenic, S., Friedrich, A., Bruggeman, C., & Stobberingh, E. (2007). The molecular evolution of methicillin-resistant Staphylococcus aureus. Clinical Microbiology and Infection, 13(3), 222–235.

Du, X., Zhu, Y., Song, Y., Li, T., Luo, T., Sun, G., Yang, С., Сао, С., Lu, Y., & Li, M. (2013). Molecular analysis of Staphylococcus epidermidis strains isolated from community and hospital environments in China. PloS One, 8(5), e62742.

Gu, B., Kelesidis, T., Tsiodras, S., Hindler, J., & Humphries, R. (2012). The emerging problem of linezolid-resistant Staphylococcus. Journal of Antimicrobial Chemotherapy, 68(1), 4–11.

Guembe, M., Pérez-Granda, M. J., Capdevila, J. A., Barberán, J., Pinilla, B., Martín-Rabadán, P., Bouza, E., on behalf of the NUVE Study Group, Millán, J., Pérez de Oteyza, C., Muiño, A., Villalba, M., Cuenca, C., Castaño, J. G., Delgado, C. M., Zamorano, S., Gómez, B., Collado, J. M., Salinas, M. T, Amat, A. S., Lázaro, J. R., Sordo, V. V., Sánchez, M. V., Benach, Á. F., Vidal, E., Albiach, L., Aparicio, J. M. A., Arroniz, E. S. A., Casademont, I., Pou, J., Solchaga, V. P., Castellón, F. E., Obanos, T. R., Egurbide Arberas, M. V., Arana, J. N., López, E. G., Gaviria, A. Z., Clemente, I. N., Ruíz, P. C., Salomó, A. C., Iftimie, S. M., Castillo, A. M., Barberá Farré, J. R., Lavería, A. O., Ribera, M. C., Pallarés, N. B., Suárez, P. C., Piorno, F. J. C., Andrés, N. A., Tarazona, R. E. R., Zapata, M. M. R., & Cerdá, M. A. C. (2017). Nationwide study on peripheral-venous-catheter-associated-bloodstream infections in internal medicine departments. Journal of Hospital Infection, 97(3), 260–266.

Hauschild, T., Sacha, P., Wieczorek, P., Zalewska, M., Kaczyńska, K., & Tryniszewska, E. (2008). Aminoglycosides resistance in clinical isolates of Staphylococcus aureus from a University Hospital in Bialystok, Poland. Folia Histochemica et Cytobiologica, 46(2), 225–228.

Hellmark, B., Söderquist, B., Unemo, M., & Nilsdotter-Augustinsson, Å. (2013). Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. International Journal of Medical Microbiology, 303(1), 32–39.

Jokinen, E., Laine, J., Huttunen, R., Rahikka, P., Huhtala, H., Vuento, R., Vuopio, J., & Syrjänen, J. (2017). Comparison of outcome and clinical characteristics of bacteremia caused by methicillin-resistant, penicillin-resistant and penicillin-susceptible Staphylococcus aureus strains. Infectious Diseases, 49(7), 493–500.

Kaplan, J. (2011). Antibiotic-induced biofilm formation. International Journal of Artificial Organs, 34(9), 737–751.

Kollef, M., & Fraser, V. (2001). Antibiotic resistance in the intensive care unit. Annals of Internal Medicine, 134(4), 298–314.

Lindsay, J. (2010). Genomic variation and evolution of Staphylococcus aureus. International Journal of Medical Microbiology, 300(2–3), 98–103.

Liu, X., Deng, S., Huang, J., Huang, Y., Zhang, Y., Yan, Q., Wang, Y., Li, Y., Sun, C., & Jia, X. (2017). Dissemination of macrolides, fusidic acid and mupirocin resistance among Staphylococcus aureus clinical isolates. Oncotarget, 8(35), 58086–58097.

Lowy, F. (2003). Antimicrobial resistance: The example of Staphylococcus aureus. Journal of Clinical Investigation, 111(9), 1265–1273.

Manandhar, S., Singh, A., Varma, A., Pandey, S., & Shrivastava, N. (2018). Biofilm producing clinical Staphylococcus aureus isolates augmented prevalence of antibiotic resistant cases in tertiary care hospitals of Nepal. Frontiers in Microbiology, 9, 2749.

Mandolfo, S., Anesi, A., Maggio, M., Rognoni, V., Galli, F., & Forneris, G. (2019). High success rate in salvage of catheter-related bloodstream infections due to Staphylococcus aureus, on behalf of project group of Italian society of nephrology. The Journal of Vascular Access, 21(3), 336–341.

Mermel, L. (2017). Short-term peripheral venous catheter-related bloodstream infections: A systematic review. Clinical Infectious Diseases, 65(10), 1757–1762.

Mohaghegh, M., Ghazvini, K., Jafari, R., Alikhani, M., Safari, M., Azari Garamjan, G., Falahi, J., & Bordbar, D. (2015). Retrospective study on the prevalence and antibiotic resistance pattern of Staphylococcus aureus and Staphylococcus epidermidis among patients suspicious of bacteremia during 2006–2011. International Journal of Enteric Pathogens, 3(2), e22930.

Morgunov, I. N., & Kukharchik, T. A. (1986). Immunologicheskie kriterii patogennosti epidermal’nogo stafilokokka [Immunological criteria of the pathogenicity of epidermal Staphylococcus]. Mikrobiologicheskii Zhurnal, 48(5), 32–35 (in Russian).

Nguyen, D. B., Shugart, A., Lines, C., Shah, A. B., Edwards, J., Pollock, D., Sievert, D., & Patel, P. R. (2017). National Healthcare Safety Network (NHSN) dialysis event surveillance report for 2014. Clinical Journal of the American Society of Nephrology, 12(7), 1139–1146.

Nunes, A., Teixeira, L., Iorio, N., Bastos, C., Fonseca, L., Soutopadron, T., & Dossantos, K. (2006). Heterogeneous resistance to vancomycin in Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus warneri clinical strains: Characterisation of glycopeptide susceptibility profiles and cell wall thickening. International Journal of Antimicrobial Agents, 27(4), 307–315.

Rağbetli, C., Parlak, M., Bayram, Y., Guducuoglu, H., & Ceylan, N. (2016). Evaluation of antimicrobial resistance in Staphylococcus aureus isolates by years. Interdisciplinary Perspectives on Infectious Diseases, 2016, 9171395.

Sabaté Brescó, M., Harris, L., Thompson, K., Stanic, B., Morgenstern, M., O’Mahony, L., Richards, R., & Moriarty, T. (2017). Pathogenic mechanisms and host interactions in Staphylococcus epidermidis device-related infection. Frontiers in Microbiology, 8, 1401.

Saharman, Y., Karuniawati, A., Severin, J., & Verbrugh, H. (2021). Infections and antimicrobial resistance in intensive care units in lower-middle income countries: A scoping review. Antimicrobial Resistance and Infection Control, 10(1), 22.

Sharma, A., Kalita, J., & Nag, V. (2019). Screening for methicillin-resistant Staphylococcus aureus carriage on the hands of healthcare workers: an assessment for hand hygiene practices. Indian Journal of Critical Care Medicine, 23(12), 590–592.

Smith, R. N., & Nolan, J. P. (2013). Central venous catheters. The British Medical Journal, 347(11), f6570.

Tatsuno, K., Ikeda, M., Wakabayashi, Y., Yanagimoto, S., Okugawa, S., & Moriya, K. (2019). Clinical features of bloodstream infections associated with peripheral versus central venous catheters. Infectious Diseases and Therapy, 8(3), 343–352.

Torumkuney, D., Pertseva, T., Bratus, E., Dziublik, A., Yachnyk, V., Liskova, A., Sopko, О., Malynovska, K., & Morrissey, I. (2018). Results from the survey of antibiotic resistance (SOAR) 2014–16 in Ukraine and the Slovak Republic. Journal of Antimicrobial Chemotherapy, 73(suppl. 5), v28–v35.

Ullah, F., Malik, S., Ahmed, J., Ullah, F., Shah, S., Ayaz, M., Hussain, S., & Khatoon, L. (2013). Investigation of the genetic basis of tetracycline resistance in Staphylococcus aureus from Pakistan. Tropical Journal of Pharmaceutical Research, 11(6), 925–931.

Voidazan, S., Albu, S., Toth, R., Grigorescu, B., Rachita, A., & Moldovan, I. (2020). Healthcare associated infections – a new pathology in medical practice? International Journal of Environmental Research and Public Health, 17(3), 760.

Wertheim, H., Melles, D., Vos, M., Van Leeuwen, W., Van Belkum, A., Verbrugh, H., & Nouwen, J. (2005). The role of nasal carriage in Staphylococcus aureus infections. The Lancet Infectious Diseases, 5(12), 751–762.

Widerström, M., Wiström, J., Edebro, H., Marklund, E., Backman, M., Lindqvist, P., & Monsen, T. (2016). Colonization of patients, healthcare workers, and the environment with healthcare-associated Staphylococcus epidermidis genotypes in an intensive care unit: A prospective observational cohort study. BMC Infectious Diseases, 16(1), 743.

Wu, J., Kusuma, C., Mond, J., & Kokai-Kun, J. (2003). Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrobial Agents and Chemotherapy, 47(11), 3407–3414.

Yılmaz, E., & Aslantaş, Ö. (2017). Antimicrobial resistance and underlying mechanisms in Staphylococcus aureus isolates. Asian Pacific Journal of Tropical Medicine, 10(11), 1059–1064.

Zhang, L., Cao, S., Marsh, N., Ray-Barruel, G., Flynn, J., Larsen, E., & Rickard, C. (2016). Infection risks associated with peripheral vascular catheters. Journal of Infection Prevention, 17(5), 207–213.

How to Cite
Berezhna, A. V., Tertyshnyi, V. O., Makarova, V. I., & Chumachenko, T. O. (2021). Staphylococcus aureus and S. epidermidis in biological systems of hospital environment: Antibiotic resistance patterns in regions of Ukraine . Regulatory Mechanisms in Biosystems, 12(1), 160-168.