Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene

  • T. M. Suprovych Podillia State University
  • M. P. Suprovych Podillia State University
  • N. B. Mokhnachova Institute of Animal Breeding and Genetic
  • O. D. Biriukova Institute of Animal Breeding and Genetic
  • L. V. Strojanovska Podillia State University
  • V. A. Chepurna Podillia State University
Keywords: autochthonous breed; polymorphism; PCR-RLFP; BoLA-DRB3 gene; consolidating and significance alleles.


At the current stage of genetic studies of cattle, more and more attention is being drawn to autochthonous breeds. Native cattle have a number of prominent phenotypic traits and have preserved unique genes and their combinations lost by modern commercial breeds, which would be valuable to use in selective programs. We surveyed polymorphism of the Ukrainian autochthonous Gray breed according to alleles of exon 2 of the BoLA-DRB3 gene. The uniqueness of the gene lies in the broad variability of its allele variants. Significant informativeness at DNA level is quite important for genetic studies. We surveyed allele polymorphism using the PCR-RLFP method on DNA isolated from 88 samples of blood of cows and 5 samples of sperm. We identified 28 alleles, of which 23 variants were nomenclature ones and 5 (jba, *jab, *jbb, *nad and *nda) were “without established nomenclature”, their share accounting for 8.9%. Four alleles *06, *12, *16 and *jba had a frequency above 5% and occupied 69.9% of the breed’s allele fund overall. The commonest allele was BoLA-DRB3.2*16 (44.1%). In total, we found 40 genotypes. Considering the significant dominance of variant *16, as expected, 5 genotypes with its inclusion occurred: *16/*16, *12/*16, *06/*16, *16/*24 and *jba/*16. It was present in the genotype of two out three studied animals. Parameters of heterozygosity, effective number of alleles, Shannon and Pielou indices indicate that Ukrainian Gray cattle are characterized by lowest level of genetic variability and biodiversity according to the BoLA-DRB3 gene compared with other breeds. Due to significant dominance of allele *16, the breed has no inbred motifs. We noted deviation toward increase in homozygosity without deviations from the norm of the distribution according to Hardy-Weinberg equilibrium. The obtained results will be used for genetic-populational programs with the purpose of improving the genetic potential of cattle breeds in terms of economically beneficial traits and diseases of cattle.


Al-Samarai, R. F., & Al-Kazaz, A. A. (2015). Molecular markers: An introduction and applications. European Journal of Molecular Biotechnology, 9(3), 119–130.

Behl, J. D., Verma, N. K., Behl, R., & Sodhi, M. (2009). Genetic variation of the major histocompatibility complex DRB3.2 locus in the native Bos indicus cattle breeds. Asian Australasian Journal of Animal Sciences, 22(11), 1487–1494.

Behl, J. D., Verma, N. K., Behl, R., Mukesh, M., & Ahlawat, S. P. S. (2007). Characterization of genetic polymorphism of the bovine lymphocyte antigen drb3.2 locus in Kankrej Cattle (Bos indicus). Journal of Dairy Science, 90(6), 2997–3001.

Behl, J. D., Verma, N. K., Tyagi, N., Mishra, P., Behl, R., & Joshi, B. K. (2012). The major histocompatibility complex in Bovines: A review. ISRN Veterinary Science, 2012, 872710.

Bodnaruk, V., Shchebatyj, Z., Muzyka, L., Zhmur, A., & Orikhivskyj, T. (2017). Genofond of some breed of cattle. Scientific Messenger LNUVMBT named after S. Z. Gzhytskyj, 19(74), 131–134.

Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., & Wiley, D. C. (1993). Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature, 364, 33–39.

Chakraborty, D., Singh, A., Tantia, M., Verma, A., & Chakravarty, A. (2015). Genetic polymorphism of BoLA-DRB3.2 locus in Sahiwal cattle. Animal Science Reporter, 9(1), 33–40.

Das, D. N., Sri Hari, V. G., Hatkar, D. N., Rengarajan, K., Saravanan, R., Suryanarayana, V. V. S., & Murthy, L. K. (2012). Genetic diversity and population genetic analysis of bovine MHC class II DRB3.2 locus in three Bos indicus cattle breeds of Southern India. International Journal of Immunogenetics, 39(6), 508–519.

Dietz, A. B., Cohen, N. D., Timms, L., & Kehrli, M. E. (1997). Bovine lymphocyte antigen class II alleles as risk factors for high somatic cell counts in milk of lactating dairy cows. Journal of Dairy Science, 80(2), 406–412.

Engelsma, K. A., Veerkamp, R. F., Calus, M. P. L., & Windig, J. J. (2013). Consequences for diversity when animals are prioritized for conservation of the whole genome or of one specific allele. Journal of Animal Breeding and Genetics, 131(1), 1–10.

Fernández, I. G., Leyva-Baca, I., Rodríguez-Almeida, F., Ulloa-Arvizu, R., Ríos-Ramírez, J. G., Gayosso-Vázquez, A., & Alonso-Morales, R. A. (2015). Creole cattle from northwestern Mexico has high genetic diversity in the locus DRB3.2. Animal Genetic Resources, 2015, 1–8.

Firouzamandi, M., Shoja, J., Bazegari, A., & Roshani, E. (2010). Study on the association of BoLA-DRB3.2 alleles with clinical mastitis in Iranian Holstein and Sarabi (Iranian native) cattle. African Journal of Biotechnology, 9(15), 2224–2228.

Fox, C. W., & Reed, D. H. (2011). Inbreeding depression increases with environmental stress: An experimental study and meta-analysis. Evolution, 65(1), 246–258.

Fries, R., Aggen, A., & Womack, J. E. (1993). The bovine genome map. Mammalian Genome, 4, 405–428.

Gelhaus, A., Schnittger, L., Mehlitz, D., Horstmann, R. D., & Meyer, C. G. (1995). Sequence and PCR-RFLP analysis of 14 novel BoLADRB3 alleles. Animal Genetics, 26(3), 147–153.

Gillespie, J. H. (2004). Population genetics: A concise guide. 2nd ed. The Johns Hopkins University Press, Baltimore.

Giovambattista, G., Moe, K. K., Polat, М., Borjigin, L., Hein, S. T., Moe, H. H., Takeshima, S. N., & Aida, Y. (2020). Characterization of bovine MHC DRB3 diversity in global cattle breeds, with a focus on cattle in Myanmar. BMC Genetics, 12, 95.

Giovambattista, G., Takeshima, S. N., Ripoli, M. V., Matsumoto, Y., Franco, L. A., Saito, H., Onuma, M., & Aida, Y. (2013). Characterization of bovine MHC DRB3 diversity in Latin American creole cattle breeds. Gene, 519(1), 150–158.

Gladyr, E. A., Zinovieva, N. A., Bykova, A. S., Vinogradova, I. V., & Ernst, L. K. (2012). Molochnaja produktivnost’ korov v zavisimosti ot inficirovannosti virusom lejkoza i genotipa po BOLA-DRB3 [Milk productivity of cows in dependence of the infection by BVL and genotype on BOLA-DRB3]. Achievements of Science and Technology of the Agro-Industrial Complex, 8, 46–48 (in Russian).

Glass, E. J., Oliver, R. A., & Russell, G. C. (2000). Duplicated DQ-haplotype increase the complexity of restriction element uses in cattle. The Journal of Immunology, 165, 134–138.

Gómez-Castro, S., Trujillo-Bravo, E., Carlos-Vicente, D., & Agron, I. (2006). Polimorfismos de BoLA–DRB3 en el bovino sintético colombiano Lucerna y asociación con conteo de células somáticas y mastitis [BoLA-DRB3 Polymorphism in Colombian synthetic cattle Lucerna and association with somatic cell counts and mastitis]. Revista Colombiana de Ciencias Pecuarias, 19(3), 270–279 (in Spanish).

Guzjejev, J. V. (2014). Genezis genofondu aborygennykh porid velykoji rogatoji hudoby Ukrajiny [Genesis of the gene pool of native cattle breeds of Ukraine]. Scientific Messenger LNUVMBT named after S. Z. Gzhytskyj, 16(3), 72–80 (in Ukrainian).

Hedrick, P. (2010). Genetic of populations. 4th ed. Mass Jones and Bartlett Publishers, Sudbury.

Hedrick, P. W., Whittam, T. S., & Parham, P. (1991). Heterozygosity at individual amino acid sites: Extremely high levels for HLA-A antigens are associated with protection from severe malaria. Proceedings of the National Academia of Sciences USA, 88(13), 5897–5901.

Hughes, A. L., & Nei, M. (1989). Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proceedings of the National Academy of Sciences of the USA, 86, 958–962.

Huzeyev, Y., Melnyk, O., Spyrydonov, V., & Melnychuk, S. (2016). Comparative analysis of genetic structure of a micropopulation of Gray Ukrainian breed cattle by DNA markers. The Animal Biology, 18(1), 22–26.

Ibrahim, E. A., Allam, N. A. T., Kotb, E. E. Z., El-Rafey, G. A., El-Deen, M. M. A., & Fadlallah, M. G. (2012). Sequence-based typing-study on the relationship between subclinical mastitis and BoLA-DRB3.2* allelic polymorphism in Egyptian cows. Global Veterinaria, 9(1), 8–22.

Juliarena, M. A., Poli, M., Sala, L., Ceriani, C., Gutierrez, S., Dolcini, G., Rodríguez, E. M., Mariño, B., Rodríguez-Dubra, C., & Esteban, E. N. (2008). Association of BLV infection profiles with alleles of the BoLADRB3.2 gene. Animal Genetics, 39(4), 432–438.

Kaur, S., Cogan, N. O. I., Forster, J. W., & Paull, J. G. (2014). Assessment of genetic diversity in Faba bean based on single nucleotide polymorphism. Diversity, 6(1), 88–101.

Kelm, S. C., Detilleux, J. C., Freeman, A. E., Kehrli, M. E., Dietz, A. B., Fox, L. K., Butler, J. E., Kasckovics, I., & Kelley, D. H. (1997). Genetic association between parameters of inmate immunity and measures of mastitis in periparturient Holstein cattle. Journal of Dairy Science, 80, 1767–1775.

Kozyr, V. S. (2006). Zberezhennia genofondu siroji ukrajins’koji porody [Preservation of the gene pool of the Gray Ukrainian breed]. Livestock in Ukraine, 10–11, 25–28 (in Ukrainian).

Kozyr, V. S. (2016). Sira ukrajins’ka poroda: Nacional’ne nadbannia na mezhi znyknennia [Gray Ukrainian breed: National heritage on the verge of extinction]. Agribusiness Today, 22(317), 38–42 (in Ukrainian).

Lancaster, A. K., Single, R. M., Solberg, O. D., Nelson, M. P., & Thomson, G. (2007). PyPop update – a software pipeline for large-scale multilocus population genomics. Tissue Antigens, 69, 192–197.

Lazebnaya, I. V., Perchun, A. V., & Lazebny, O. E. (2020). Intrabreed and interbreed variation of the BOLA-DRB3.2 gene in the Kostroma and Yaroslavl indigenous Russian cattle breeds. Immunogenetics, 72, 355–366.

Lebedeva, N. V., & Krivoluckij, D. A. (2002). Biologicheskoe raznoobrazie i metody ego ocenki [Biodiversity and methods of its assessment]. In: Geografija i monitoring bioraznoobrazija [Geography and monitoring of biodiversity]. Lomonosov Moscow State University, Moscow (in Russian).

Lee, B. Y., Hur, T. Y., Jung, Y. H., & Kim, H. (2012). Identification of BoLA-DRB3.2 alleles in Korean native cattle (Hanwoo) and Holstein populations using a next generation sequencer. Animal Genetics, 43(4), 438–441.

Maillard, J. C., Renard, C., Chardon, P., Chantal, I., & Bensaid, A. (1999). Characterization of 18 new BoLA-DRB3 alleles. Animal Genetics, 30, 200–203.

Miyasaka, T., Takeshima, S. N., Matsumoto, Y., Kobayashi, N., Matsuhashi, T., Miyazaki, Y., Tanabe, Y., Ishibashi, K., Sentsui, H., & Aida, Y. (2011). The diversity of bovine MHC class II DRB3 and DQA1 alleles in different herds of Japanese black and Holstein cattle in Japan. Gene, 472, 42–49.

Miyasaka, T., Takeshima, S. N., Sentsu, H., & Aida, Y. (2012). Identification and diversity of bovine major histocompatibility complex class II haplotypes in Japanese black and Holstein cattle in Japan. Journal of Dairy Science, 95(1), 420–431.

Mohammadi, A., Nassiry, M. R., Mosafer, J., Mohammadabadi, M. R., & Sulimova, G. E. (2009). Distribution of BoLA-DRB3 allelic frequencies and identification of a new allele in the Iranian cattle breed Sistani (Bos indicus). Russian Journal of Genetics, 45(2), 224–229.

Moiseeva, I. G., Ukhanov, S. V., Stolpovskiy, Y. A., Sulimova, G. E., & Kashtanov, S. N. (2006). Genofondy selskokhozyaystvennykh zhivotnykh [Gene pool of farm animals]. Nauka, Moscow (in Russian).

Morales, J. P., López-Herrera, A., & Zuluaga, J. E. (2020). Association of BoLA DRB3 gene polymorphisms with BoHV-1 infection and zootechnical traits. Open Veterinary Journal, 10(3), 331–339.

Mota, A. F., Martinez, M. L., & Coutinho, L. L. (2004). Genotyping BoLA-DRB3 alleles in Brazilian cattle (Bos indicus) by temperature gradient gel electrophoresis (TGGE) and direct sequencing. European Journal of Immunogenetics, 31(3), 31–35.

Nassiry, M. R., Shahroodi, F. E., Mosafer, J., Mohammadi, A., Manshad, E., Ghazanfari, S., Mohammad Abadi, M. R., & Sulimova, G. E. (2005). Analysis and frequency of bovine lymphocyte antigen (BoLA-DRB3) alleles in Iranian Holstein cattle. Genetika, 41(6), 817–822.

Nikbakht, G., Ranjbar, M. M., Ghasemi, F., & Asadian, F. (2012). Allelic polymorphism in exon 2 of the BoLA-DRB3 gene in Iranian Holstein cows. Animal Production Research, 1(2), 33–41.

Oprzadek, J., Brzozowska, A. M., Urtnowski, P., Rutkowska, K., & Lukaszewicz, M. (2018). Association of BoLA-DRB3 genotype with somatic cell count in milk of Polish Holstein cattle. Brazilian Journal of Animal Science, 47, e20150290.

Oprzadek, J., Urtnowski, P., Sender, G., Pawlik, A., & Lukaszewicz, M. (2012). Frequency of BoLA-DRB3 alleles in Polish Holstein-Friesian cattle. Animal Science Papers and Reports, 30(2), 91–101.

Park, C., Russ, I., Da, Y., & Lewin, H. A. (1995). Genetic mapping of F13A to BTA23 by spermtyping: Difference in recombination rate between bulls in the DYA-PRL interval. Genomics, 27(1), 113–118.

Parnian, M., Ghorashi, S. A., Selehi, A., Pashmi, M., & Mollasalehi, M. R. (2006). Polymorphism of bovine lymphocyte antigen DRB3.2 in Holstein bulls of Iran using PCR-RFLP. Iranian Journal of Biotechnology, 4, 197–200.

Pielou, E. C. (1966). Shannon’s formula as a measure of species difersity: Its use and misure. The American Naturalist, 100(914), 463–465.

Pojskić, N. (2018). iMAF – index of major allele frequency. Genetics and Applications, 2(2), 78–81.

Ruzina, M. N., Shtyfurko, T. A., Mohammad Abadi, M. R., Gendzhieva, O. B., Cedev, C., & Sulimova, G. E. (2010). Polimorfizm gena BoLA-DRB3 u krupnogo rogatogo skota mongol’skoj, kalmyckoj i jakutskoj porod [Polymor-phism of the BoLA-DRB3 gene in the Mongolian, Kalmyk, and Yakut cattle breeds]. Russian Journal of Genetics, 46(4), 517–525 (in Russian).

Scherf, B. D. (2000). World watch list for domestic animal diversity. 3rd ed. Food and Agriculture Organization of the United Nations, Rome.

Sharafutdinov, G. S., Sibagatullin, F. S., Balakirev, N. A., Shajdullin, R. R., Shuvarikov, A. S., Askarov, R. S., & Sharafutdinova, J. A. (2019). Tehnologija proizvodstva produkcii zhivotnovodstva [Standardization, technology of processing and storage of livestock products]. Lan, Kazan (in Russian).

Sharif, S., Mallard, B. A., Wilkie, B. N., Sargeant, J. M., Scott, H. M., Dekkers, J. C., & Leslie, K. E. (1998). Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) alleles with occurrence of disease and milk somatic cell score in Canadian dairy cattle. Animal Genetics, 29, 185–193.

Sharif, S., Mallard, B. A., Wilkie, B. N., Sargeant, J. M., Scott, H. M., Dekkers, J. C., & Leslie, K. E. (1999). Associations of the bovine major histocompatibility complex DRB3 (BoLA-DRB3) with production traits in Canadian dairy cattle. Animal Genetics, 30(2), 157–160.

Sharma, B. S., Verschoor, C. P., & Karrow, N. A. (2011). Short communication: Associations of BoLA alleles DRB3.2*16 and DRB3.2*23 with health-related traits in Holstein bulls. Canadian Journal of Animal Science, 91, 597–600.

Shuplyk, V. V., Savchuk, O. V., & Huzyev, I. V. (2013). Henofond porid sil’s’kohospodars’kykh tvaryn Ukrajiny [Stock gene pool of agricultural animals of Ukraine]. Private Enterprise Zvolieyko D. G., Kamenets-Podilskiy (in Ukrainian).

Singh, N., Choudhury, D. R., Singh, A. K., Kumar, S., Srinivasan, K., Tyagi, R. K., Singh, N. K., & Singh, R. (2013). Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS One, 8(12), e84136.

Singh, U., Deb, R., Alyethodi, R., Alex, R., Kumar, S., Chakraborty, S., Dhama, K., & Sharma, A. (2014). Molecular markers and their applications in cattle genetic research: A review. Biomarkers and Genomic Medicine, 6, 49–58.

Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology, 2(16), 1–18.

Starkenburg, R. J., Hansen, L. B., Kehrli, M. E., & Chester-Jones, H. J. (1997). Frequencies and effects of alternative DRB3.2 alleles of bovine lymphocyte antigen for Holsteins in milk selection and control lines. Dairy Science, 80(12), 3411–3419.

Stolpovskij, J. A., Glazko, V. I., Oblap, R. V., & Kushnir, V. A. (1998). Fenotypycheskaja y genetycheskaja struktura seroj ukraynskoj porody krupnogo rogatogo skota [The phenotypic and genetic structure of the Ukrainian Gray cattle breed]. Cytology and Genetics, 32(5), 54–66 (in Russian).

Sulimova, G. E. (2004). DNK-markery v geneticheskih issledovanijah: Tipy markerov, ih svojstva i oblasti primenenija [DNA markers in genetic research: Marker types, their properties and applications]. The Success of Modern Biology, 124(3), 260–271 (in Russian).

Sulimova, G. E. (2006). DNK-markery v izuchenii genofonda porod krupnogo rogatogo skota [DNA markers in the study of gene pool of cattle breeds]. Genofondy sel’skohozjajstvennyh zhivotnyh: Geneticheskie resursy zhivotnovodstva Rossii. Nauka, Moscow. Pp. 138–166 (in Russian).

Suprovich, T., & Mokhnachova, N. (2017). Gene polymorphism of economically-useful traits in Ukrainian Gray cattle breed. The Animal Biology, 19(1), 111–118.

Suprovych, T. M., & Suprovych, M. P. (2020). Polimorfizm gena BoLA-DRB3 jak marker chutlyvosti do zahvorjuvan’ velykoji rogatoji hudoby [BoLA-DRB3 gene polymorphism as a marker of susceptibility to cattle diseases]. State Agrarian and Engineering University in Podilia, Kamianets-Podilskyi (in Ukrainian).

Suprovych, T. M., Suprovych, M. P., & Kolinchuk, R. V. (2017b). Consequences of “holsteinization” of Ukrainian black-pied dairy breed by gene BoLA-DRB3.2. Animal Breeding and Genetics, 54, 146–156 (in Ukrainian).

Sydorenko, O. V., & Gyzieev, Y. V. (2019). Assessment of genetic variability of dam Ukrainian Gray breed cattle by blood group systems and microsatellite loci. Animal Science and Food Technology, 10(3), 56–62.

Takeshima, S. N., Corbi-Botto, C., Giovambattista, G., & Aida, Y. (2018). Genetic diversity of BoLA-DRB3 in South American Zebu cattle populations. BMC Genetics, 19, 33.

Takeshima, S. N., Giovambattista, G., Okimoto, N., Matsumoto, Y., Rogberg-Muñoz, A., Acosta, T. J., Onuma, M., & Aida, Y. (2015a). Characterization of bovine MHC class II DRB3 diversity in South American Holstein cattle populations. Tissue Antigens, 86(6), 419–430.

Takeshima, S. N., Miyasaka, T., Matsumoto, Y., Xue, G., Diaz, V., Rogberg-Munoz, A., Giovambattista, G., Ortiz, M., Oltra, J., Kanemaki, M., Onuma, M., & Aida, Y. (2015b). Assessment of biodiversity in Chilean cattle using the distribution of major histocompatibility complex class II BoLA-DRB3 allele. Tissue Antigens, 85(1), 35–44.

Takeshima, S. N., Miyasaka, T., Polata, M., Kikuya, M., Matsumoto, Y., Mingala, C. N., Villanueva, M. A., Salces, A. J., Onuma, M., & Aida, Y. (2014). The great diversity of major histocompatibility complex class II genes in Philippine native cattle. Meta Gene, 2, 176–190.

Takeshima, S., Saitou, N., Morita, M., Inoko, H., & Aida, Y. (2003). The diversity of bovine MHC class II DRB3 genes in Japanese black, Japanese shorthorn, Jersey and Holstein cattle in Japan. Gene, 316, 111–118.

Thiel, T., Kota, R., Grosse, I., Stein, N., & Graner, A. (2004). SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Research, 32(1), e5.

Van Eijk, M. J. T., Stewart-Haynes, J. A., & Lewin, H. A. (1992). Extensive polymorphism of the BoLA-DRB3 gene distinguished by PCR-RFLP. Animal Ge-netics, 23(6), 483–496.

Yuhki, N., & O’Brien, S. J. (1990). DNA variation of the mammalian major histo-compatibility complex reflects genomic diversity and population history. Proceedings of the National Academy of Sciences of the United States of America, 87(2), 836–840.

Zerabruk, M., Bennewitz, J., Kantanen, J., Olsaker, I., & Vangen, O. (2007). Analysis of genetic diversity and conservation priorities for six north Ethiopian cattle breeds. Journal of Animal Breeding and Genetics, 124(4), 236–241.

How to Cite
Suprovych, T. M., Suprovych, M. P., Mokhnachova, N. B., Biriukova, O. D., Strojanovska, L. V., & Chepurna, V. A. (2021). Genetic variability and biodiversity of Ukrainian Gray cattle by the BoLA-DRB3 gene . Regulatory Mechanisms in Biosystems, 12(1), 33-41.