Antagonistic activity of strains of lactic acid bacteria isolated from Carpathian cheese

  • L. Y. Musiy Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies (Lviv)
  • O. Y. Tsisaryk Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies (Lviv)
  • I. M. Slyvka Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies (Lviv)
  • I. I. Kushnir Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies (Lviv)
Keywords: brynza cheese; budz cheese, lactic acid bacteria; technological properties; antagonistic properties.

Abstract

A promising area for improving probiotics is the search for new sources of strains and the development of complex preparations which would include different types of bacterial cultures that complement each other. Sources of selection may be traditional dairy products, in particular, cheeses made from raw milk. Wild strains can be endowed with antibacterial properties. The antagonistic action of lactic acid bacteria (LAB) has long attracted the attention of researchers and scientists. The aim of the study was to investigate the antagonistic activity against pathogenic and opportunistic microorganisms of LAB strains isolated from traditional Carpathian cheese. Three samples of cheese were selected for the research – one sample of brynza and budz (brynza before salting), made in the highlands of the Carpathians, and one sample of budz, made in the foothills. LAB were identified using classic microbiological and modern molecular genetic methods (RAPD-PCR, RFLP-PCR, 16S rRNA gene sequencing). The objects of our studies were five strains of LAB: Lactococcus lactis IMAU32258, L. garvieae JB2826472, Enterococcus durans FMA8, E. faecium L3-23, E. faecium IMAU9421. Technological parameters such as acid-forming activity of milk fermentation, resistance to high concentrations of NaCl and temperature optimums of cultivation were taken as the main criteria for assessing the suitability of LAB for inclusion in fermentation preparations. Antagonistic activity was determined by agar diffusion (agar well method) and optic density of test cultures using a Multiscan FC microplate reader (Thermo scientifiс, USA) at the wave of 620 nm. There were four reference strains of pathogenic and opportunistic microorganisms were test cultures: Listeria monocytogenes PCM 2191, Staphylococcus aureus PCM 458, Escherichia coli PCM 2208, Salmonella typhimurium PCM 2182. Strains of the test cultures were received from the collection of microorganisms of the Institute of Biology and Biotechnology the (University of Rzeszów, Poland). According to the ability of LAB strains to form lactic acid, L. lactis IMAU32258 was the best acid-forming agent with an acid-forming energy of 94 °T. E. faecium was characterized by moderate levels of active and titratable acidity. Less pronounced acid-forming ability was determined for the species E. durans and L. garvieae. Cultures of the genus E. faecium, L. garvieae and E. durans were the most resistant to high concentrations of NaCl (6.5%). Regarding temperature optimums, we found that strains of E. faecium and E. durans species grew both at temperatures of 10, 15 and 45 °C, whereas no growth of L. lactis IMAU32258 and L. garvieae JB282647 2 was observed at 45 °C. Among the studied bacteria, the strains of E. durans FMA8 and E. faecium L3-23 were characterized by the highest antagonistic activity in producing the largest zones of growth inhibition and optic density of pathogenic and opportunistic microorganisms. The strain L. garvieae JB282647 2 exhibited the lowest level of antagonistic activity against pathogenic and opportunistic microorganisms.

References

Abdelfatah, E. N., & Mahboub, H. H. H. (2018). Studies on the effect of Lactococcus garvieae of dairy origin on both cheese and Nile tilapia (O. niloticus). International Journal of Veterinary Science and Medicine, 6(2), 201–207.

Abeer, A. Z. (2018). Study the effect of probiotic bacteria isolated from foods on pathogens. Biomedical Research, 29(12), 2509–2515.

Ahn, H., Kim, J., & Kim, W. J. (2017). Isolation and characterization of bacteriocin-producing Pediococcus acidilactici HW01 from malt and its potential to control beer spoilage lactic acid bacteria. Food Control, 80, 59–66.

Ajay, G. C., Gunaseelan, D., Sushma, N., Ramkrishna, S., & Utpal, R. (2015). An antimicrobial metabolite from Bacillus sp.: Significant activity against pathogenic bacteria including multidrug-resistant clinical strains. Frontiers in Microbiology, 6, 1335.

Altuntaş, E. G., Ayhan, K., Peker, S., Ayhan, B., & Demiralp, D. O. (2014). Purification and mass spectrometry based characterization of a pediocin produced by Pediococcus acidilactici 13. Molecular Biology Reports, 41, 6879–6885.

Amaral, D. M. F., Silva, L. F., Casarotti, S. N., Nascimento, L. C., & An, L. B. (2016). Penna Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. Journal of Dairy Science, 100, 933–949.

Amninder, S. S., Arshdeep, S., & Minto, M. (2020). Decimal log reductions of Salmonella Senftenberg 775 W and other Salmonella serovars in nonfat milk and powder. Journal of Dairy Science, 103, 6894–6899.

Anas, M., Eddine, H. J., & Mebrouk, K. (2008). Antimicrobial activity of Lactobacillus species isolated from Algerian raw goat’s milk against Staphylococcus aureus. World Journal of Dairy and Food Sciences, 3, 39–49.

Balouiri, M., Sadiki, M., & KoraichiIbnsouda, S. (2016). Methods for in vitro evaluating antimicrobial activity: A review. Journal of Pharmaceutical Analysis, 6(2), 71–79.

Barancelli, G. V., Camargo, T. M., Gagliardi, N. G., Porto, E., Souza, R. A., Campioni, F., Falcao, J. P., Hofer, E., Cruz, A. G., & Oliveira, C. A. F. (2014). Pulsed-field gel electrophoresis characterization of Listeria monocytogenes isolates from cheese manufacturing plants in Sao Paulo, Brazil. International Journal of Food Microbiology, 173, 21–29.

Castillo, P. M., Díaz, A., & Durán, M. (2015). Antagonistic action of Lactobacillus spp. against Staphylococcus aureus in cheese from Mompox – Colombia. Revista Facultad Nacional de Agronomía Medellín, 68(2), 7721–7727.

Cavicchioli, V. Q., Camargo, A. C., Todorov, S. D., & Nero, L. A. (2017). Novel bacteriocinogenic Enterococcus hirae and Pediococcus pentosaceus strains with antilisterial activity isolated from Brazilian artisanal cheese. Journal of Dairy Science, 100, 2526–2535.

Cavicchioli, V. Q., Dornellas, W. S., Perin, L. M., Pieri, F. A., Franco, B. D. G. M., Todorov, S. D., & Nero, L. A. (2015). Genetic diversity and some aspects of antimicrobial activity of lactic acid bacteria isolated from goat milk. Applied Biochemistry and Biotechnology, 175, 2806–2822.

Chen, X., Zhang, J., Yi, R., Mu, J., Zhao, X., & Yang, Z. (2018). Hepatoprotective effects of Lactobacillus on carbon tetrachlorideinduced acute liver injury in mice. International Journal of Molecular Sciences, 19, 2212.

Choi, A. R., Patra, J. K., Kim, W. J., & Kang, S. S. (2018). Antagonistic activities and probiotic potential of lactic acid bacteria derived from a plant-based fermented food. Frontiers in Microbiology, 9, 1–12.

Chornogor, N. P., Bolshakova, V. L., & Vinnikov, A. I. (2006). Antagonistychna aktyvnist molochnokyslyh bakterij [Antagonistic activity of lactic acid bacteria]. Biosystems Diversity, 14(2), 187–191 (in Ukrainian).

de Almeida, J. W. L. G., Ferrari, Í. S., de Souza, J. V., da Silva, C. D. A., da Costa, M. M., & Dias, F. S. (2015). Characterization and evaluation of lactic acid bacteria isolated from goat milk. Food Control, 53, 96–103.

Deegan, L. H., Cotter, P. D., Hill, C., & Ross, P. (2006). Bacteriocins: Biological tools for bio-preservation and shelf-life extension. International Dairy Journal, 16, 1058–1071.

Deep, S., & Kundu, S. (2015). Assessment of preliminary in vitro probiotic characterstics of the folate producing yogurt starter culture Streptococcus and Lactobacillus species. Journal of Pharmacy and Biological Sciences, 10(3), 26–31.

Favaro, L., Penna, A. L. B., & Todorov, S. D. (2015). Bacteriocinogenic LAB from cheeses – application in biopreservation? Trends in Food Science and Technology, 41, 37–48.

Fernández, E., Alegría, A., Delgado, S., & Mayo, B. (2010). Phenotypic, genetic and technological characterization of Lactococcus garvieae strains isolated from a raw milk cheese. International Dairy Journal, 20, 142–148.

Fijan, S. (2016). Antimicrobial effect of probiotics against common pathogens. Probiotics and Prebiotics in Human Nutrition and Health, 2016, 191–221.

Fortina, M. G., Ricci, G., Foschino, R., Picozzi, C., Dolci, P., & Zeppa, G. (2007). Phenotypic typing, technological properties and safety aspects of Lactococcus garvieae strains from dairy environments. Journal of Applied Microbiology, 103, 445–453.

Foschino, R., Nucera, D., Volponi, G., Picozzi, C., Ortoffi, M., & Bottero, M. T. (2008). Comparison of Lactococcus garvieae strains isolated in northern Italy from dairy products and fishes through molecular typing. Journal of Applied Microbiology, 105, 652–662.

Gazzola, A., Maisano, A. M., Bianchini, V., Vezzoli, F., Romanò, A., Graber, H. U., Cremonesi, P., Zanardi, G., Cappa, V., & Luini, M. (2020). Characterization of Staphylococcus aureus from bulk tank milk of dairy cattle in Lombardy (Northern Italy). Journal of Dairy Science, 103, 2685–2692.

Goh, H. F., & Philip, K. (2015). Isolation and mode of action of bacteriocin BacC1 producedby nonpathogenic Enterococcus faecium C1. Journal of Dairy Science, 98(8), 5080–5090.

Heredia-Castro, P. Y., Méndez-Romero, J. I., Hernández-Mendoza, A., Acedo-Félix, E., González-Córdova, A. F., & Vallejo-Cordoba, B. (2015). Antimicrobial activity and partial characterization of bacteriocinlike inhibitory substances produced by Lactobacillus spp. isolated from artisanal Mexican cheese. Journal of Dairy Science, 98, 8285–8293.

Irkitova, A. N., & Grebenshchikova, A. V. (2018). Antimicrobial action of a bacterial consortium containing strains of the genus Bacillus. Ukrainian Journal of Ecology, 8(4), 444–449 (in Ukrainian).

Jeong, D., Kim, D. H., Song, K. Y., & Seo, K. H. (2018). Antimicrobial and anti-biofilm activities of Lactobacillus kefiranofaciens DD2 against oral pathogens. Journal of Oral Microbiology, 10(1), 1472985.

Kamruzzaman, M., Jahan, S., Fuadh-Al-Kabir, M., Sarowar, J. M., Rahman, M., Ahsanul, K. K., Chowdhury, R., & Hossain, S. (2013). The investigation of probiotic potential of lactic acid bacteria isolated from cow milk. International Journal of Biosciences, 3(4), 161–167.

Langa, S., Martín-Cabrejas, I., Montiel, R., Peirotén, Á., Arqués, J. L., & Medina, M. (2016). Protective effect of reuterin-producing Lactobacillus reuteri against Listeria monocytogenes and Escherichia coli O157:H7 in semi-hard cheese. Food Control, 84, 284–289.

Maldonado, B. A., Cárdenas, N., Martínez, B., Ruiz-Barba, J. L., Fernández-Garayzábal, J. F., & Rodríguez, J. M. (2013). Novel class IId bacteriocin from Lactococcus garvieae that inhibits septum formation in L. garvieae strains. Applied and Environmental Microbiology, 79, 4336–4346.

McAuley, C. M., Britz, M. L., Gobius, K. S., & Heather, C. M. (2015). Prevalence, seasonality, and growth of enterococci in raw and pasteurized milk in Victoria, Australia. Journal of Dairy Science, 98, 8348–8358.

Moore, T., Globa, L., Barbaree, J., Vodyanoy, V., & Sorokulova, I. (2013). Antagonistic activity of Bacillus bacteria against food-borne pathogens. Journal of Probiotics and Health, 1(3), 110.

Ovchinnikov, K. V., Chi, H., Mehmeti, I., Holo, H., Nes, I., & Diep, D. B. (2016). Novel group of leaderless multipeptide bacteriocins from gram-positive bacteria. Applied and Environmental Microbiology, 82, 5216–5224.

Pacha, P. A., Munoz, M. A., Paredes-Osses, E., & Latorre, A. A. (2020). Virulence profiles of Staphylococcus aureus isolated from bulk tank milk and adherences on milking equipment on Chilean dairy farms. Journal of Dairy Science, 103(5), 4732–4737.

Rahmeh, R., Akbar, A., Kishk, M., Al Onaizi, T., Al-Shatti, A., Shajan, А., Batool, A., Al-Mutairi, S., & Awatef, Y. (2018). Characterization of semipurified enterocins produced by Enterococcus faecium strains isolated from raw camel milk. Journal of Dairy Science, 101, 4944–4952.

Rasovic, M. B., Mayrhofer, S., Martinovic, A., Durr, K., & Domog, K. J. (2017). Lactococci of local origin as potential starter cultures for traditional Montenegrian production. Food Technology and Biotechnology, 55(1), 55–66.

Reis, J. A., Paula, A. T., Casarotti, S. N., & Penna, A. L. B. (2012). Lactic acid bacteria antimicrobial compounds: Characteristics and applications. Food Engineering Review, 4, 124–140.

Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet, A. S. M., Alam, U., & Jahid, I. K. (2019). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103, 1223–1237.

Ribeiro Júnior, J. C., Silva, F. F., Lima, J. B. A., Ossugui, E. H., Teider Junior, P. I., Campos, A. C. L. P., Navarro, A., & Tamanini, R. (2019). Molecular characterization and antimicrobial resistance of pathogenic Escherichia coli isolated from raw milk and Minas Frescal cheeses in Brazil. Journal of Dairy Science, 102(12), 10850–10854.

Ricchi, M., Scaltriti, E., Cammi, G., Garbarino, C., Arrigoni, N., Morganti, M., & Pongolini, S. (2019). Persistent contamination by Listeria monocytogenes of bovine raw milk investigated by whole-genome sequencing. Journal of Dairy Science, 102, 6032–6036.

Sarantinopoulos, P., Kalantzopoulos, G., & Tsakalidou, E. (2002). Effect of Enterococcus faecium on microbiological, physicochemical and sensory characteristics of Greek Feta cheese. International Journal of Food Microbiology, 76, 93–105.

Slyvka, I. M., Tsisaryk, O. Y., & Botser, T. (2015a). Vydilennja ta identyfikacija molochnokyslyzh bakterij za dopomogoju metodu RFLP-PCR genu 16s rRNK [Isolation and identification of lactic acid bacteria using the method RFLP-PCR gene 16s rRNK]. Biologija Tvaryn, 17(1), 109–117 (in Ukrainian).

Slyvka, I. M., Tsisaryk, O. Y., & Botser, T. (2015b). Identyfikacija molochnokyslyh bakterij iz zastosuvannjam kompleksu molekuljarno-genetychnyh metodiv [Identification of lactic acid bacteria using a set of molecular genetic methods]. Naukovyj Visnyk Lvivskogo Nacionalnogo Universytetu Veterynarnoji Medycyny ta Biotehnologij imeni Gzhyckogo, 17(1), 201–210 (in Ukrainian).

Swaminathan, B., & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9, 1236–1243.

Thierry, A., Valence, F., Deutsch S.-M., Even, S., Falentin, H., Le Loir, Y., Jan, G., & Gagnaire, V. (2015). Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese – A review. Dairy Science and Technology, 95, 895–918.

Todorov, S. D., Wachsman, M., Tomé, E., Dousset, X., Destro, M. T., Dicks, L. M. T., & Drider, D. (2010). Characterization of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiology, 27, 869–879.

Tosukhowong, A., Zendo, T., Visessanguan, W., Roytrakul, S., Pumpuang, L., & Jaresitthikunchai, J. (2012). Garvieacin Q a novel class II bacteriocin from Lactococcus garvieae BCC 43578. Applied and Environmental Microbiology, 78, 1619–1623.

Vasyliuk, O. M., Kovalenko, N. K., & Garmasheva, I. L. (2014). Antagonistychni vlastyvosti shtamiv Lactobacillus plantarum, izolovanyh iz tradycijnyh fermentovanyh produktiv Ukrainy [Antagonistic properties of strains of Lactobacillus plantarum, isolated from traditional fermented products of Ukraine]. Mikrobiologichnyj Zhurnal, 76(3), 24–30 (in Ukrainian).

Vendrell, D., Balcázar, J. L., Ruiz-Zarzuela, I., de Blas, I., Gironés, O., & Múzquiz, J. L. (2006). Lactococcus garvieae in fish: A review. Comparative Immunology, Microbiology and Infectious Diseases, 29, 177–198.

Wang, T., & Liu, M. (2016). The effect of bacteriocins derived from lactic acid bacteria on growth and biofilm formation of clinical pathogenic strains. International Journal of Clinical and Experimental Medicine, 9(4), 7343–7348.

Yerlikaya, O., & Akbulut, N. (2019). Potential use of probiotic Enterococcus faecium and Enterococcus durans strains in Izmir Tulum cheese as adjunct culture. Journal of Food Science and Technology, 56(4), 2175–2185.

Yukalo, V. G., & Storozh, L. A. (2018). Isolation of κ-CN-1P and β-CN-5Р fractions from native casein micelles. The Ukraіnian Biochemical Journal, 90(4), 74–79 (in Ukrainian).

Zhang, F., Jiang, M., Wan, C., Chen, X., Chen, X., Tao, X., Shah, N. P., & Wei, H. (2016). Screening probiotic strains for safety: Evaluation of virulence and antimicrobial susceptibility of enterococci from healthy Chinese infants. Journal of Dairy Science, 99, 4282–4290.

Zhang, J., Yang, Y., Yang, H., Bu, Y., Yi, H., Zhang, L., Han, X., & Ai, L. (2018). Purification and partial characterization of bacteriocin Lac-B23, a novel bacteriocin production by Lactobacillus plantarum J23, isolated from chinese traditional fermented milk. Frontiers in Microbiology, 9, 2165.

Published
2020-11-17
How to Cite
Musiy, L. Y., Tsisaryk, O. Y., Slyvka, I. M., & Kushnir, I. I. (2020). Antagonistic activity of strains of lactic acid bacteria isolated from Carpathian cheese . Regulatory Mechanisms in Biosystems, 11(4), 572-578. https://doi.org/10.15421/022089