The importance of aquatic plants in maintaining zooplankton diversity and abundance: An experimental approach

  • S. A. Kurbatova Papanin Institute for Biology of Inland Waters
  • I. Y. Yershov Papanin Institute for Biology of Inland Waters
Keywords: aquatic plant; Cladocera; Copepoda; biodiversity; microcosms.


The influence of different species and ecological forms of higher aquatic plants on the abundance, biomass and species diversity of zooplankton was investigated in experimental ecosystems (microcosms). It was shown that in the absence of fish and macroinvertebrate predators, the abundance and diversity of zooplankton in the plants beds increased. Not only phytophilous, littoral, and small planktonic crustaceans, but also some large obligate planktonic crustaceans, reached a high abundance among the plants. Plants belonging to different ecological groups stimulated an increase in the abundance of different groups of zooplankton. In the beds of submerged plants, the number of Cladocera increased to a greater extent than Copepoda or Rotifera. The abundance of Copepoda, both Cyclopoida and Calanoida, grew in the beds of helophytes. The relative number of predators in the community increased among the plants. The species structure and quantitative parameters of zooplankton had their own characteristics in monospecies and mixed phytocenoses of the same plant species. The index of species diversity of zooplankton acquired the highest values in the mixed phytocenosis. Higher aquatic plants increase spatial heterogeneity, which stimulates the development of facultative planktonic and benthic species. The formation of phytogenic detritus and the lifetime release of organic substances by plants into the water causes the development of bacteria and protozoa, which expands the quality and size range of food organisms for zooplankton. Therefore, zooplankton becomes more diverse in terms of the set of trophic groups.


Booker, J., & Cheruvelil, K. S. (2011). Are zooplankton food resources poor in the vegetated littoral zone of shallow lakes? Freshwater Biology, 56(12), 2459–2472.

Brammer, E. S., & Wetzel, R. G. (1984). Uptake and release of K+, Na+ and Ca2+ by the water soldier, Stratiotes aloides L. Aquatic Botany, 19, 119–130.

Burks, R. L., Jeppesen, E., & Lodge, D. M. (2000). Macrophyte and fish chemicals suppress Daphnia growth and alter life-history traits. Oikos, 88(1), 139–147.

Carrik, H. J., Fahnenstiel, G. L., Stoermer, E. F., & Wetzel, R. G. (1991). The importance of zooplankton-protozoan trophic couplings in Lake Michigan. Limnology and Oceanography, 36, 1335–1345.

Cerbin, S., van Donk, E., & Gulati, R. D. (2007). The influence of Myriophyllum verticillatum and artificial plants on some life history parameters of Daphnia magna. Aquatic Ecology, 41(2), 263–271.

Dvořák, J. (1987). Production-ecological relationships between aquatic vascular plants and invertebrates in shallow waters and wetlands – a review. Archiv für Hydrobiologie, 27, 181–184.

Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9–15.

Jacobsen, L., Perrow, M. R., Landkildehus, F., Hjǿrne, M., Lauridsen, T. L., & Berg, S. (1997). Interactions between piscivores, zooplanktivores and zooplankton in submerged macrophytes: Preliminary observations from enclosure and pond experiments. Hydrobiologia, 342/343, 197–205.

Kuczyńska-Kippen, N., & Joniak, T. (2010). The impact of water chemistry on zooplankton occurrence in two types (field versus forest) of small water bodies. International Review of Hydrobiology, 95(2), 130–141.

Kudryavtsev, V. M., & Kudryavtseva, N. A. (1982). Razlozheniye Potamogeton lucens L. v litorali Rybinskogo vodokhranilishcha [Decomposition of Potamogeton lucens L. in the littoral zone of the Rybinsk reservoir]. Hydrobiological Journal, 18(5), 82–87 (in Russian).

Kurbatova, S. A., & Ershov, I. Y. (2012). Development of a zooplankton community including Heterocope saliens Lillieborg in an experiment with hydrophytes. Inland Water Biology, 5(1), 75–82.

Kurbatova, S. A., Yershov, I. Y., Lapteva, N. A., & Borisovskaya, E. V. (2014). Environment of planktic crustaceans as changed by hornwort: effect on abundance of Daphnia. Inland Water Biology, 7(2), 117–124.

Lauridsen, T. L., & Lodge, D. M. (1996). Avoidance by Daphnia magna of fish and macrophytes: Chemical cues and predator-mediated use of macrophyte habitat. Limnology and Oceanography, 41(4), 794–798.

Lefler, J. W. (1984). The use of self-selected, generic aquatic microcosm for pollution effects assessment. In: White, H. H. (Ed.). Concepts in marine pollution measurements. University of Maryland, Maryland. Pp. 139–158.

Manuilova, E. F. (1964). Vetvistousyye rachki (Cladocera) fauny SSSR [Cladocera (Cladocera) of the fauna of the USSR]. Nauka, Moscow-Leningrad (in Russian).

Martemyanov, V. I. (2014). Porogovyye kontsentratsii kationov vo vneshney srede, neobkhodimyye dlya podderzhaniya ionnogo balansa mezhdu organizmom vselentsa Elodea canadensis Michaux i presnoy vodoy [Threshold concentrations of cations in the environment necessary to maintain the ionic balance between the organism of the invader Elodea canadensis Michaux and fresh water]. Russian Journal of Biological Invasions, 3, 59–72 (in Russian).

Meerhoff, M., Iglesias, C., Teixeira de Mello, F., Clemente, J. M., Jensen, E., Lauridsen, T. L., & Jeppesen, E. (2007). Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology, 52(6), 1009–1021.

Mjelde, M., & Faafeng, B. A. (1997). Ceratophyllum demersum hampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwater Biology, 37(2), 355–365.

Mulderij, G., Mau, B., de Senerpont Domis, L. N., Smolders, A. J. P., & van Donk, E. (2009). Interaction between the macrophyte Stratiotes aloides and filamentous algae: Does it indicate allelopathy? Aquatic Ecology, 43, 305–312.

Rybakova, I. V. (2010). Number, biomass, and activity of bacteria in the water of overgrowths and periphyton on higher aquatic plants. Inland Water Biology, 3(4), 307–312.

Sanders, R. W., & Wickham, S. A. (1993). Planktonic protozoa and metazoa: Predation, food quality and population control. Marine Microbial Food Webs, 7, 197–223.

Sanders, R. W., Williamson, C. E., Stutzman, P. L., Moeller, R. E., Goulden, C. E., & Aoki-Goldsmith, R. (1996). Reproductive success of “herbivorous” zooplankton fed algal and nonalgal food resources. Limnology and Oceanography, 41, 1295–1305.

Semenchenko, V. P., & Razlutsky, V. I. (2009). Faktory, opredelyayushchiye sutochnoye raspredeleniye i peremeshcheniye zooplanktona v litoral’noy zone presnovodnykh ozer (obzor) [Factors determining the daily distribution and movement of zooplankton in the littoral zone of freshwater lakes (review)]. Journal of the Siberian Federal University, Biology Series, 2, 191–225 (in Russian).

Tavşanoğlu, Ü. N., Çakiroğlu, A. I., Erdoğan, Ş., Meerhoff, M., Jeppesen, E., & Beklioglu, M. (2012). Sediments, not plants, offer the preferred refuge for Daphnia against fish predation in Mediterranean shallow lakes: An experimental demonstration. Freshwater Biology, 57(4), 795–802.

van Donk, E., & van de Bund, W. J. (2002). Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: Allelopathy versus other mechanisms. Aquatic Botany, 72(3–4), 261–274.

How to Cite
Kurbatova, S. A., & Yershov, I. Y. (2020). The importance of aquatic plants in maintaining zooplankton diversity and abundance: An experimental approach . Regulatory Mechanisms in Biosystems, 11(4), 531-535.