Distribution of sturgeon in the River Irtysh

  • A. A. Chemagin Tobolsk Complex Scientific Station UrB RAS
Keywords: riverbed depression; aggregation of fish; Ob-Irtysh basin; Acipenseridae; turbulence.

Abstract

Using the modern hydroacoustic methods and the computerized software and hardware complex “AsCor”, the features of the distribution of fish of the Acipenseridae family in the lower reaches of the large transboundary river the Irtysh (Western Siberia) have been investigated: in the water area of the riverbed depression (turbulent flow) and control sections (laminar flow). The identification of sturgeon was carried out by the echometric method according to the shape of the swim bladder. It is shown that in the water area of the riverbed depression, increased density of fish is formed, the share of sturgeons being 4.9–5.8%. Among other fish species, the group of cyprinids always dominates. The significant excess of the average fish density in the riverbed depression, in contrast to the control, was 6–30 times. In the water area of the riverbed depression, the average fish density was 4,524, in the control sections 245–2,091 individuals/ha. The size structure of the group of sturgeon in the control sections was represented by individuals with body sizes less than 25–30 cm, and in the riverbed depression – by individuals of different sizes and ages with a body length to 35 cm. The water area of the riverbed depression is located in the meandering section of the river and is characterized by intense vertical vortex structures (whirlpools) and the presence of malfunctioning currents. Features of the hydrological characteristics of the riverbed depression are factors in the formation of aggregations of fish, since fish can use the energy of discrete vortices, low-velocity areas, and as a result, show preference for certain turbulence regimes.

References

Ajemian, M. J., Sohel, S., & Mattila, J. (2014). Effects of turbidity and habitat complexity on antipredator behavior of three-spined sticklebacks (Gasterosteus aculeatus) Environmental Biology of Fishes, 98(1), 45–55.

Altenritter, M. E., Wieten, A. C., Ruetz, C. R., & Smith, K. M. (2013). Seasonal spatial distribution of juvenile lake sturgeon in Muskegon Lake, Michigan, USA. Ecology of Freshwater Fish, 22, 467–478.

Andrews, S. N., O’Sullivan, A. M., Helminen, J., Arluison, D. F., Samways, K. M., Linnansaari, T., & Curry, R. A. (2020). Development of active numerating side-scan for a high-density overwintering location for endemic shortnose sturgeon (Acipenser brevirostrum) in the Saint John River, New Brunswick. Diversity, 12(1), 23.

Baryshnikov, N. B. (2007). Dinamika ruslovykh potokov [Dynamics of channel flows]. RGGMU, Saint Petersburg (in Russian).

Bogdanov, V. D., & Mel'nichenko, I. P. (2011). Rol’ zimoval’nykh yam r. Lyapin dlya sigovykh ryb [Role of riverbed wintering depressions of the Lyapin River for coregonids]. Agrarnyy Vestnik Urala, 86, 48–49 (in Russian).

Borisenko, E. S., Mochek, A. D., Pavlov, D. S., & Chemagin, A. A. (2013). Distribution of fish in the river system of the lower Irtysh. Journal of Ichthyology, 53(1), 16–27.

Borisenko, E. S., Mochek, A. D., Pavlov, D. S., & Degtev, A. I. (2006). Hydroacoustic characteristics of mass fishes of the Ob-Irtysh basin. Journal of Ichthyology, 46(2), 227–234.

Chemagin, A. A. (2018). Osobennosti gidravliki rechnykh uchastkov ruslovykh zimoval’nykh yam reki Irtysh v period otkrytoy vody [Features of hydraulics of the river sectors with riverbed wintering holes of the Irtysh in open water period]. Bulletin of the Astrakhan State Technical University, Fisheries, 2018, 60–69 (in Russian).

Cotel, A. J., Webb, P. W., & Tritico, H. (2006). Do brown trout choose locations with reduced turbulence? Transactions of the American Fisheries Society, 135(3), 610–619.

Duan, M., Qu, Y., & Zhuang, P. (2017). Swimming characteristics of the Siberian sturgeon. In: Williot, P., Nonnotte, G., Vizziano-Cantonnet, D., & Chebanov, M. (Eds.). The Siberian sturgeon (Acipenser baerii, Brandt, 1869). Volume 1 – Biology. Springer. Pp. 229–246.

Elder, J., & Coombs, S. (2015). The influence of turbulence on the sensory basis of rheotaxis. Journal of Comparative Physiology A, 201(7), 667–680.

Gerstner, C. L. (1998). Use of substratum ripples for flow refuging by Atlantic cod, Gadus morhua. Environmental Biology of Fishes, 51(4), 455–460.

Holubová, M., Čech, M., Vašek, M., & Peterka, J. (2019). Density dependent attributes of fish aggregative behaviour. PeerJ, 7, e6378.

Liao, J. C., & Cotel, A. (2012). Effects of turbulence on fish swimming in aquaculture. In: Palstra, A. P., & Planas, J. P. (Eds.). Swimming physiology of fish. Springer. Pp. 109–127.

Marenkov, O. N. (2018). Ecological and biological aspects of zander and Volga zander reproduction under conditions of the Zaporizhzhia reservoir (Ukraine). Ukrainian Journal of Ecology, 8(1), 441–450.

Minello, T., & Benfield, M. (2018). Effects of turbidity on feeding of southern flounder on estuarine prey. Marine Ecology Progress Series, 594, 203–212.

Mochek, A. D., Borisenko, E. S., & Pavlov, D. S. (2019). Winter fish distribution in the riverbed depression in the Urtysh River. Journal of Ichthyology, 59(3), 352–357.

Muška, M., Tušer, M., Frouzová, J., Draštík, V., Čech, M., Jůza, T., Kratochvíl, M., Mrkvička, T., Peterka, J., Prchalová, M., Říha, M., Vašek, M., & Kubečka, J. (2013). To migrate, or not to migrate: Partial diel horizontal migration of fish in a temperate freshwater reservoir. Hydrobiologia, 707, 17.

Nakayama, S., Doering‐Arjes, P., Linzmaier, S., Briege, J., Klefoth, T., Pieterek, T., & Arlinghaus, R. (2018). Fine‐scale movement ecology of a freshwater top predator, Eurasian perch (Perca fluviatilis), in response to the abiotic environment over the course of a year. Ecology of Freshwater Fish, 27(3), 798–812.

Pavlov, D. S., Mochek, A. D., Borisenko, E. S., Degtev, A. I., Shakirov, R. R., & Degtev, E. A. (2006). Biological significance of the Gornoslinkinskaya riverbed depression in the Irtysh. Journal of Ichthyology, 46(2), S125–S133.

Pavlov, D. S., Mochek, A. D., Borisenko, E. S., Degtev, E. A., & Degtev, A. I. (2010). Irregularities of the bottom and fish aggregations on a stretch of the Irtysh. Journal of Ichthyology, 50(11), 997–1001.

Ruban, G. I. (2019). Adaptive ecological and morphological features of the Siberian sturgeon (Acipenser baerii Brandt). Inland Water Biology, 12(2), 210–216.

Sohel, S., Mattila, J., & Lindström, K. (2017). Effects of turbidity on prey choice of three-spined stickleback Gasterosteus aculeatus. Marine Ecology Progress Series, 566, 159–167.

Thayer, D., Ruppert, J. L. W., Watkinson, D., Clayton, T., & Poesch, M. S. (2017). Identifying temporal bottlenecks for the conservation of large-bodied fishes: Lake sturgeon (Acipenser fulvescens) show highly restricted movement and habitat use over-winter. Global Ecology and Conservation, 10, 194–205.

Westrelin, S., Roy, R., Tissot-Rey, L., Bergès, L., & Argillier, C. (2017). Habitat use and preference of adult perch (Perca fluviatilis L.) in a deep reservoir: Variations with seasons, water levels and individuals. Hydrobiologia, 809(1), 121–139.

Wishingrad, V., Chivers, D. P., & Ferrari, M. C. (2014). Relative cost/benefit trade‐off between cover‐seeking and escape behaviour in an ancestral fish: The importance of structural habitat heterogeneity. Ethology, 120, 973–981.

Yuan, X., Cai, L., Johnson, D., Tu, Z., & Huang, Y. (2016). Oxygen consumption and swimming behavior of juvenile Siberian sturgeon Acipenser baerii during stepped velocity tests. Aquatic Biology, 24(3), 211–217.

Yudanov, K. I., Kalikhman, I. L., & Tesler, V. D. (1984). Rukovodstvo po provedeniyu gidroakusticheskikh s’emok [Guidelines for hydroacoustic surveys]. VNIRO, Moscow (in Russian).

Zimmerman, D., Pavlik, C., Ruggles, A., & Armstrong, M. P. (1999). An experimental comparison of ordinary and universal kriging and inverse distance weighting. Mathematical Geology, 31(4), 375–390.

Published
2020-08-09
How to Cite
Chemagin, A. A. (2020). Distribution of sturgeon in the River Irtysh . Regulatory Mechanisms in Biosystems, 11(3), 444–448. https://doi.org/10.15421/022068