Marker changes of blood plasma proteinogram in rats with toxic hepatitis

  • V. A. Gryshchenko National University of Life and Environmental Sciences of Ukraine
  • V. S. Minina National University of Life and Environmental Sciences of Ukraine
Keywords: total protein; protein fractions; diclofenac sodium, BAA


In recent years, there has been a pronounced tendency to increase in the incidence of drug-induced liver damage due to the growing expansion of the pharmaceutical market, which is also observed in the case of incorrect administration of nonsteroidal anti-inflammatory drugs (NSAIDs). In this case, the violation of the functional state of the body has a negative effect on synthetic processes, which in combination with the protein system of tissues significantly affects the metabolic homeostasis of the body. Therefore, the aim of the study was to determine marker changes in the plasma protein spectrum in laboratory rats with diclofenac-induced hepatitis and the effectiveness of reparative therapy based on milk phospholipids. The drug form of toxic hepatitis in laboratory animals was induced according to the author’s model by oral administration of diclofenac sodium (NSAID group) at a dose of 12.5 mg/kg, once a day for 14 days. Thus, in rats with toxic hepatitis there was a probable decrease in plasma total protein content by 15.6% compared with control, indicating a violation of protein-synthesizing function of the liver. With the introduction into the body of clinically healthy and sick animals of the liposomal form of the bioadditive "FLP-MD" based on milk phospholipids, the level of total protein in blood plasma corresponded to control values. As a result of the study of the plasma protein spectrum of Wistar rats, the four most sensitive indicators, which undergo significant probable changes in absolute and relative units of measurement with the development of toxic diclofenac-induced hepatitis, are protein fractions with molecular weights of 180–190, 150–170, 60 and 54–58 kDa and four markers of the effectiveness of restoring the protein-synthesizing function of the liver with the use of corrective therapy, in particular, bioadditives "FLP-MD" – 900, 180–190, 68–70 kDa and the value of A/G ratio, which is important for implementation in applied veterinary medicine, especially in the diagnosis of NSAID hepatopathy, supplementing the picture of its pathogenesis at the molecular level and testing the effectiveness of newly created drugs of hepatoprotective profile.


Aithal, G. P., Watkins, P. B., Andrade, R. J., Larrey, D., Molokhia, M., Takikawa, H., Hunt, C. M., Wilke, R. A., Avigan, M., Kaplowitz, N., Bjornsson, E., & Daly, A. K. (2011). Case definition and phenotype standardization in drug-induced liver injury. Clinical Pharmacology and Therapeutics, 89(6), 806–815.

Alberghina, D., Giannetto, C., Vazzana, I., Ferrantelli, V., & Piccione, G. (2011). Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cows. Journal of Veterinary Diagnostic Investigation, 23, 111–114.

Alempijevic, T., Zec, S., & Milosavljevic, T. (2017). Drug-induced liver injury: Do we know everything? World Journal Hepatology, 9(10), 491–502.

Calitz, C., Hamman, J. H., Fey, S. J., Wrzesinski, K., & Gouws, C. (2018). Recent advances in three-dimensional cell culturing to assess liver function and dysfunction: From a drug biotransformation and toxicity perspective. Toxicology Mechanisms and Methods, 28(5), 369–385.

Cong, L., Shuichi, S., & Kousei, I., (2016). Assessment of mitochondrial dysfunction-related drug-induced hepatotoxicity in primary rat hepatocytes. Toxicology and Applied Pharmacology, 302(1), 23–30.

Didriksen, A., Grimnes, G., Hutchinson, M. S., Kjærgaard, M., Svartberg, J., Joakimsen, R. M., & Jorde, R. (2013). The serum 25-hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. European Journal of Endocrinology, 169(5), 559–567.

Eghtesad, S., Poustchi, H., & Malekzadeh, R. (2013). Malnutrition in liver cirrhosis: The influence of protein and sodium. Middle East Journal of Digestive Diseases, 5(2), 65–75.

Forsthuber, M., Marius Kaiser, A., Granitzer, S., Hassl, I., Hengstschläger, M., Stangl, H., & Gundacker, C. (2020). Albumin is the major carrier protein for PFOS, PFOA, PFHxS, PFNA and PFDA in human plasma. Environment International, 137, 105324.

Gryshchenko, V. (2017). Biohimichnyj profil’ plazmy krovi shhuriv za eksperymental’nogo gepatytu na tli vvedennja natriju dyklofenaku [Biochemical properties of the plasma of rats with the experimentally induced hepatitis after oral administration of sodium diclofenac]. Regulatory Mechanisms in Biosystems, 8(2), 191–196 (in Ukrainian).

Gryshchenko, V. A. (2017). Gematologichnyj profil’ u shhuriv pry eksperymental’nomu dyklofenak-indukovanomu gepatyti [Hematological profile of rats in experimental diclofenac-induced hepatitis]. Ukrainian Journal of Ecology, 7(3), 78–83 (in Ukrainian).

Gryshchenko, V. A. (2019). Zhovchno-kyslotnyj sklad krovi ta zhovchi v teljat za enteropatologiji ta zastosuvanni fosfolipidiv moloka [Blood and acid composition of blood and biles in calves with enteropathology and application of milk phospholipids]. Ukrainian Journal of Veterinary Sciences, 10(4), 36–42 (in Ukrainian).

Gryshchenko, V. A., Sуsolyatin, S. V., & Gulevata, J. V. (2018). Phospholipid composition of blood plasma and internal organs of rats with diclofenac-induced hepatitis. Ukrainian Journal of Ecology, 8(3), 235–240.

Gutyi, B., Ostapiuk, A., Kachmar, N., Stadnytska, O., Sobolev, O., Binkevych, V., Petryshak, R., Petryshak, O., Kulyaba, O., Naumyuk, A., Nedashkivsky, V., Nedashkivska, N., Magrelo, N., Golodyuk, I., Nazaruk, N., & Binkevych, O. (2019). The effect of cadmium loading on protein synthesis function and functional state of laying hens’ liver. Ukrainian Journal of Ecology, 9(3), 222–226.

Hu, Z. Y., Lausted, C., Yoo, H., Yan, X. W., Brightman, A., Chen, J. K., Wang, W. Z., Bu, X. L., & Hood, L. (2014). Quantitative liver-specific protein fingerprint in blood: A signature for hepatotoxicity. Theranostics, 4(2), 215–228.

Jain, R. B., & Ducatman, A. (2019). Perfluoroalkyl acids serum concentrations and their relationship to biomarkers of renal failure: Serum and urine albumin, creatinine, and albumin creatinine ratios across the spectrum of glomerular function among US adults. Environmental Research, 174, 143–151.

John, P., & Kale, P. P. (2019). Prominence of oxidative stress in the management of anti-tuberculosis drugs related hepatotoxicity. Drug Metabolism Letters, 13(2), 95–101.

Kandemir, F. M., Yıldırım, S., Kucukler, S., Caglayan, C., Darendelioğlu, E., & Dortbudak, M. B. (2020). Protective effects of morin against acrylamide-induced hepatotoxicity and nephrotoxicity: A multi-biomarker approach. Food and Chemical Toxicology, 138, 111190.

Kragh-Hansen, U., Chuang, V. T., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological and Pharmaceutical Bulletin, 25(6), 695–704.

Kullak-Ublick, G. A., Andrade, R. J., Merz, M., End, P., Benesic, A., Gerbes, A. L., & Aithal, G. P. (2017). Drug-induced liver injury: Recent advances in diagnosis and risk assessment. Recent Advances in Clinical Practice, 66(6), 1154–1164.

Kulyaba, O., Stybel, V., Gutyj, B., Turko, I., Peleno, R., Turko, Y., Golovach, P., Vishchur, V., Prijma, O., Mazur, I., Dutka, V., Todoriuk, V., Golub, O., Dmytriv, O., & Oseredchuk, R. (2019). Effect of experimental fascioliasis on the protein synthesis function of cow liver. Ukrainian Journal of Ecology, 9(4), 612–615.

Laemmly, U. K. (1970). Cleavage of structural proteins during the assembly of the heat of Bacteriophage T4. Nature, 227(5259), 680–685.

Markley, J. L., & Wencewicz, T. A. (2018). Tetracycline-inactivating enzymes. Frontiers in Microbiology, 9, 1058.

Melnychuk, D. O., & Gryshchenko, V. A. (2016). Sposib modelyuvannya toksichnogo gepatitu [Method of modeling of toxic hepatitis]. Patent UA, 105657, 2016 (in Ukrainian).

Melnychuk, D. O., Gryshchenko, V. A., & Lytvynenko, O. N. (2009). Veterynarna biologichno aktyvna dobavka liposomal’noji formy ta sposib reparatyvnoji terapiji v gepatologiji [Veterinary biologically active additive of liposomal form and method of reparative therapy in hepatology]. Patent UA, 86516 (in Ukrainian).

Mengoli, M., Parmeggiani, D., Mengoli, M. C., Grinzi, G., & Tolomelli, S. (2011). Drug-induced hepatotoxicity: Clinical and biochemical features of 26 patients and a review of the literature. Recenti Progressi in Medicina, 102(6), 253–260.

Nakano, K., Ando, H., Kurokawa, S., Hosohata, K., Ushijima, K., Takada, M., Tateishi, M., Yonezawa, A., Matsubara, K., Masuda, S., Inui, K., Morita, T., & Fujimura, A. (2015). Association of decreased mRNA expression of multidrug and toxin extrusion protein 1 in peripheral blood cells with the development of flutamide-induced liver injury. Clinical Therapeutics, 37(8), e31.

Peter, J. S., & Prince, S. E. (2018). Diclofenac-induced renal toxicity in female Wistar albino rats is protected by the pre-treatment of aqueous leaves extract of Madhuca longifolia through suppression of inflammation, oxidative stress and cytokine formation. Biomedicine and Pharmacotherapy, 98(12), 45–51.

Qin, S., Zhou, Y., Gray, L., Kusebauch, U., McEvoy, L., Antoine, D. J., Hampson, L., Park, K. B., Campbell, D., Caballero, J., Glusman, G., Yan, X., Kim, T.-K., Yuan, Y., Wang, K., Rowen, L., Moritz, R. L., Omenn, G. S., Pirmohamed, M., & Hood, L. (2016). Identification of organ-enriched protein biomarkers of acute liver injury by targeted quantitative proteomics of blood in acetaminophen- and carbon-tetrachloride-treated mouse models and acetaminophen overdose patients. Journal of Proteome Research, 15(10), 3724–3740.

Quinlan, G. J., Martin, G. S., & Evans, T. W. (2005). Albumin: Biochemical properties and therapeutic potential. Hepatology, 41(6), 1211–1219.

Rostom, A., Goldkind, L., & Laine, L. (2005). Nonsteroidal anti-inflammatory drugs and hepatic toхicity: A systematic review of randomized concontrolled trils in arthritis patients. Clinical Gastroenterology and Hepatology, 3(5), 489–498.

Sanz-Villanueva, L., Parra-Martinez, C., Medina-Caliz, I., Sanabria-Cabrera, J., Robles-Diaz, M., Ortega-Alonso, A., Gonzalez-Jimenez, A., Gasca, J., Sanjuan-Jimenez, R., Garcia-Cortes, M., Lucena, M. I., & Andrade, R. J. (2019). Accuracy of drug hepatotoxicity potential classifications in assessing severity related to drug-induced liver injury (DILI). European Journal of Clinical Pharmacology, 75(1), S103.

Schroeder, H. W., & Cavacini, L. (2010). Structure and function of immunoglobulins. The Journal of Allergy and Clinical Immunology, 125(2), 41–52.

Schueller, F., Roy, S., Vucur, M., Trautwein, C., Luedde, T., & Roderburg, C. (2018). The role of miRNAs in the pathophysiology of liver diseases and toxicity. International Journal of Molecular Sciences, 19(1), 261.

Singh, D., Qi, R., Jordan, J. L., San Mateo, L., & Kao, C. C. (2013). The human antimicrobial peptide LL-37, but not the mouse ortholog, mCRAMP, can stimulate signaling by poly(I:C) through a FPRL1-dependent pathway. The Journal of Biological Chemistry, 288, 8258–8268.

Thakkar, S., Chen, M. J., Fang, H., Liu, Z. C., Roberts, R., & Tong, W. D. (2018). The liver toxicity knowledge base (LKTB) and drug-induced liver injury (DILI) classification for assessment of human liver injury. Expert Review of Gastroenterology and Hepatology, 12(1), 31–38.

Van der Vusse, G. J. (2009). Albumin as fatty acid transporter. Drug Metabolism and Pharmacokinetics, 24(4), 300–307.

How to Cite
Gryshchenko, V. A., & Minina , V. S. (2020). Marker changes of blood plasma proteinogram in rats with toxic hepatitis . Regulatory Mechanisms in Biosystems, 11(3), 360-366.