The effect of miR-101 on the memory of rats with a model of Alzheimer’s disease

  • O. G. Berchenko Institute of Neurology, Psychiatry and Narcology
  • N. O. Levicheva Institute of Neurology, Psychiatry and Narcology
  • D. O. Bevzyuk Institute of Neurology, Psychiatry and Narcology
  • V. V. Sokolik Institute of Neurology, Psychiatry and Narcology
Keywords: spatial; working; emotional memory; hippocampus; neurodegeneration.


Memory impairment is a hallmark of Alzheimer’s disease. The clinical diagnosis of the disease is made in the later stages of its development, when specific therapy of the disease is not always effective. Therefore, the detection of early behavioral manifestations of memory disorders in the development of the disease will allow the use of preventive therapy aimed at stopping the death of neurons in brain structures. A neuroethological study of working, spatial, and emotional memory was performed in rats 15–16 months of age with a model of early manifestations of Alzheimer’s disease induced by stereotactic administration of β-amyloid peptide 40 aggregates into the hippocampus. Changes in the neuroethological components of working and spatial memory have been identified. Testing of working memory showed a violation in rats of recognizing the shape of identical objects, reducing experimental activity to unfamiliar objects and their differentiation. Spatial orientation disorders have been identified in the Barnes labyrinth. Emotional memory research has shown the preservation of innate forms of protective adaptive behaviour. At the same time, vegetative indicators reflected an increase in emotional tension. Intranasal administration of liposomal miRNA miR-101 involved in liposomes to rats with a model of early manifestations of Alzheimer’s disease improved neuroethological parameters of working and spatial memory. Restoration of the level of research activity and differentiation of familiar and unfamiliar objects in the testing of working memory in rats has been established. Spatial memory in Barnes labyrinth testing was improved by reproducing spatial orientation skills and relieving emotional stress. Thus, the intranasal use of miR-101 in Alzheimer’s disease is a promising approach to prevent the development of amyloidosis and preserve memory in the early manifestations of Alz-heimer’s disease.


Abdurаsulоvа, I. N., Еkimоvа, I. V., & Chеrnyshjov, М.V. (2019). Narusheniye kognitivnykh funktsiy u krys Vistar v modeli doklinicheskoy stadii bolezni Parkinsona [Cognitive impairment in Wistar rats in a model of the preclinical stage of Parkinson’s disease]. Zhurnаl Vysshеy Nеrvnоy Dеyatеl’nоsti, 69(3), 364–381 (in Russian).

Amakiri, N., Kubosumi, A., & Tran, J. (2019). Amyloid beta and MicroRNAs in Alzheimer’s disease. Frontiers in Neuroscience, 13, 430.

Anokhin, P. K. (1968). Biologiya i neyrofiziologiya ulovnogo refleksa [Biology and neurophysiology of the catch reflex]. Mediczina, Moscow (in Russian).

Antunes, M., & Biala, G. (2012). The novel object recognition memory: Neurobiology, test procedure, and its modifications. Cognitive Processing, 13, 93–110.

Attar, A., Liu, T., & Chan, W.-T. C. (2013). A shortened barnes maze protocol reveals memory deficits at 4-months of age in the triple-transgenic mouse model of Alzheimer’s disease. PLoS One, 8(11), e80355.

Bengoetxea, X., Rodriguez-Perdigon, M., Ramirez, M. J. (2015). Object recognition test for studying cognitive impairments in animal models of Alzheimer’s disease. Frontiers in Bioscience, 7, 10–29.

Bevziuk, D. O., Levicheva, N. O., & Sokolik, V. V. (2020). Osoblyvosti porushen’ pam’yati na ranniy stadiyi rozvytku khvoroby Altsheymera u shchuriv [Features of memory disorders in the early stages of Alzheimer’s disease in the rats]. Physiological Journal, 66(1), 68–74 (in Ukrainian).

Bullock, R. (2002). New drugs for Alzheimer’s disease and other dementias. The British Journal of Psychiatry, 180(2), 135–139.

Buresh, Y., Petran, M, & Zakhar, I. (1962). Elektro-fiziologicheskiye metody issledovaniya [Electro-physiological research methods]. Izdatel’stvo Inostrannoj Literatury’, Moscow (in Russian).

Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’s disease as a disconnection syndrome? Neuropsychology Review, 13, 79–92.

Eisenstein, M. (2019). Pharma’s roller-coaster relationship with RNA therapies. Nature, 574, 10–16.

Francis, P. T., Ramirez, M. J., & Lai, M. K. (2010). Neurochemical basis for symptomatic treatment of Alzheimer’s disease. Neuropharmacology, 59, 221–229.

Grigorchuk, О. S. (2013). Rol’ neyronov dorsal’nogo gippokampa v mekhanizmakh formirovaniya razlichnykh emotsional’no-motivatsionnykh sostoyaniy u krys: Effekty peptida del’ta-sna [The role of dorsal hippocampal neurons in the mechanisms of formation of various emotional and motivational states in rats: Effects of the delta sleep peptide]. Moscow (in Russian).

Guljaеv, S. М., Тarаskin, V. V., & Rаdnаеvа, L. D. (2017). Antiamnesticheskiy effekt ekstrakta vzdutoplodnika sibirskogo pri skopolamin-indutsirovannoy amnezii [Anti-amnestic effect of the Siberian baffle extract with scopolamine-induced amnesia]. Obzory po Klinicheskoy Farmakologii i Lekarstvennoy Terapii, 15(4), 53–54 (in Russian).

Huijgen, J., & Samson, S. (2015). The hippocampus: A central node in a large-scale brain network for memory. Revue Neurologiqu (Paris), 171(3), 204–216.

Insel, N., & Takehara-Nishiuchi, K. (2013). The cortical structure of consolidated memory: A hypothesis on the role of the cingulate-entorhinal cortical connection. Neurobiology of Learning and Memory, 106(7), 343–350.

Makarenko, U. A. (1980). Sistemnaya organizatsiya emotsional’nogo povedeniya [Systemic organization of emotional behavior]. Mediczina, Moscow (in Russian).

Mugantseva, E. A. (2010). Issledovaniye prostranstvennoy pamyati i spektral’no-korrelyatsionnykh kharakteristik EEG gippokampa i frontal’noy kory na modeli bolezni Altsgeymera [The study of spatial memory and spectral-correlation characteristics of the EEG of the hippocampus and frontal cortex on a model of Alzheimer’s disease]. Pushchino (in Russian).

Mugantseva, E. A., & Podolski, I. Y. (2009). Animal model of Alzheimer’s disease: Characteristics of EEG and memory. Central European Journal of Biology, 4(4), 507–514.

Mukhin, V. (2013). Patogeneticheskie mehanizmyi disfunktsii bazalnoy holinergicheskoy sistemyi pri bolezni Altsgeymera [Pathogenesis of the basal forebrain cholinergic dysfunction in Аlzheimer’s disease]. Rossijskii Fiziologicheskij Zhurnal imeni I. M. Sechenova, 99(7), 793–804 (in Russian).

Olde Loohuis, N. F., Kos, A., & Martens, G. J. (2012). MicroRNA networks direct neuronal development and plasticity. Cellular and Molecular Life Sciences, 69, 89–102.

Purdenko, T. I. (2014). Problema kognityvnykh rozladiv u nevrologichnij praktyci (oglyad literatury) [The problem of cognitive impairment in neurological practice (reference review)]. Bukovinian Medical Herald, 18(4), 216–221 (in Ukrainian).

Raven, F., Ward, J. F., & Zoltowska, K. M. (2017). Soluble Gamma-secretase modulators attenuate Alzheimer’s β-amyloid pathology and induce conformational changes in presenilin 1. EBioMedicine, 24, 93–101.

Shaik, M. M., Tamargo, I. A., & Abubakar, M. B. (2018). The role of microRNAs in Alzheimer’s disease and their thera-peutic potentials. Genes (Basel), 9(4), 174.

Shulga, S. M. (2014). Obtaining and characteristic of curcumin liposomal form. Biotechnologia Acta, 7(5), 55–61.

Siegel, G., Saba, R., & Schratt, G. (2011). MicroRNAs in neurons: Manifold regulatory roles at the synapse. Current Opinion in Genetics and Development, 21, 491–497.

Silаchjov, D. Н., Shrаm, S. I., & Shаkоvа, F. М. (2008). Fоrmirоvаniе prоstrаnstvеnnоj pаmjati u krys s ishеmichеskim pоvrеzhdеniеm prеfrоntаl’nоj kоry mоzgа: effеkty sintеtichеskоgо аnаlоgа АКТG [The formation of spatial memory in rats with ischemic damage to the prefrontal cortex: effects of a synthetic analogue of ACTH]. Zhurnal Vysshei Nervnai Deiatelnosti I. P. Pavlova, 58(4), 458–466 (in Russian).

Sokolik, V. V., Berchenko, O. G., & Shulga, S. M. (2017). Comparative analysis of nasal therapy of curcumin soluble and liposomal forms of rats with model of Alzheimer’s disease. Journal of Alzheimer’s Disease and Parkinsonism, 7(4), 1000357.

Sokolik, V. V., Berchenko, O. H., & Levicheva, N. V. (2019). Anti-amyloidogenic effect of miR-101 in experimental Alzheimer’s disease. Biotechnologia Acta, 12(3), 41–49.

Sysоеv, U. I. (2019). Меkhаnizm dеjstvija nоvоgо prоizvоdnоgо etаnоlаminа – bis{2-[(2e)-4-gidrоksi-4-оksоbut-2-еnоilоksi]-N, N-dietiletаnаmonija} butаndiоnаtа [The mechanism of action of a new derivative of ethanolamine - bis (2-(2e)-hydroxy and oxobut-2-enoxy-n n-diethyl ethanolammonium butanedione]. Ekspеrimеntаl’nаja i Klinichеskаja Fаrmаkоlоgija, 82(4), 3–10 (in Russian).

Tzyy-Nan, H., & Yi-Ping, H. (2014). Novel object recognition for studying memory in mice. Neuroscience, 19, 1–7.

Vilardo, E., Barbato, C., & Ciotti, M. (2010). MicroRNA-101 regulates amyloid precursor protein expression in hippocampal neurons. Journal of Biological Chemistry, 285, 18344–18351.

Vinogradova, O. S. (1975). Gippokamp i pamyat’ [Hippocampus and memory]. Nauka, Moscow (in Russian).

Wahl, D., Coogan, S., & Couter, D. (2017). Cognitive and behavioral evaluation of nutritional interventions in rodent models of brain aging and dementia. Clinical Interventions in Aging, 12, 1419–1428.

Wang, W., Kwon, E. J., & Tsai, L.-H. (2012). MicroRNAs in learning, memory, and neurological diseases. Learning Memory, 19, 359–368.

Webster, S. J., Bachstetter, A. D., & Eldik, L. J. (2014). Using mice to model Alzheimer’s dementia: An overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Frontiers in Genetics, 5, 88.

Zarifkar, A. H., Zarifkar, A., & Bagheri, F. V. (2019). Ameliorative effects of different transcranial electrical stimulation paradigms on the novel object recognition task in a rat model of Alzheimer disease. Galen Medical Journal, e1440.

Zhang, R., Xue, G., & Xie, X. (2012). Novel object recognition as a facile behavior test for evaluating drug effects in AβPP/PS1 Alzheimer’s disease mouse model. Journal of Alzheimer’s Disease, 31(4), 801–812.

How to Cite
Berchenko, O. G., Levicheva, N. O., Bevzyuk, D. O., & Sokolik, V. V. (2020). The effect of miR-101 on the memory of rats with a model of Alzheimer’s disease . Regulatory Mechanisms in Biosystems, 11(3), 354-359.