The impact of humic acid additives on mineral metabolism of rabbits in the postnatal period of ontogenesis

Keywords: humic acid; humic substances; macroelements; microelements; mineral metabolism; rabbit; bone tissue.


Humic acids are characterized by chelating properties due to which they are able to influence the mineral metabolism in animals. Rabbits have species-specific characteristics of mineral metabolism, which distinguishes them from most species of mammals. For the experiment, 16 rabbits of 45-day-old of Hyplus breed were divided into the experimental and control group of 8 rabbits in each. The animals were 15 days in the preparatory period. The rabbits of the experimental group received humic acid additive individually with water in the amount of 5 mg/kg, the rabbits of the control group received pure water in the same amount. The ability of humic acid additive to increase the content of calcium, ionized calcium, iron, to correct the content of copper and zinc, and also to increase the activity of alkaline phosphatase in the blood serum of rabbits of the experimental group has been proved. We observed the early effect of the humic acid additive on increasing the content of iron and calcium ionized and a later effect on the activity of alkaline phosphatase and an increase in the content of copper in the blood serum. The influence of humic acid additive on the distribution of calcium, phosphorus, manganese, copper and zinc in bone tissue is determined. According to a histological study, there was a significant increase in the number of layers of osteons and osteoblasts in the bone tissue of the femur, an increase in the number of osteons and osteoblasts in the bone tissue of the sternum and an increase in the number of columns of chondrocytes and an increase in the number of chondrocytes in the column in the cartilaginous tissue of the sternum. The results of a histological study of bone tissue, together with an increase in structural macroelements in it and redistribution of osteotropic trace elements in the blood and bone tissue suggest the possibility of using a humic acid additive to intensify the growth and mineralization of bone tissue, which can improve the state of bone tissue of rabbits in the postnatal period ontogenesis.


Baofeng, L., Zhi, Y., Bei, C., Guolin, M., Qingshui, Y., & Jian, L. (2010). Characterization of a rabbit osteoporosis model induced by ovariectomy and glucocorticoid. Acta Orthopaedica, 81(3), 396–401.

Beck, K. L., & Coad, J. (2017). Dairy product (Calcium) consumption and iron nutrition. In: Watson, R., Collier, R. J., & Preedy, V. (Eds.). Nutrients in dairy and their implications on health and disease. Academic Press, Cambridge. Pp. 149–160.

Beshkenadze, I., Chagelishvili, A., Begheluri, G., Zhorzholiani, N., Gogaladze, M., Urotadze, S., & Klarjeishvili, N. (2016). New generation premixes for rabbit nutrition. Annals of Agrarian Science, 14(4), 288–291.

Breslau, N. A. (1996). Calcium, magnesium and phosphorus: Intestinal absorption. In: Favus, M. J. (Eds.). Primer on the metabolic bone diseases and disorders of mineral metabolism (2rd ed.). Lippincott-Raven, Philadelphia. Pp. 49–56.

Çalışır, M., Akpınar, A., Poyraz, Ö., Göze, F., & Çınar, Z. (2015). The histopathological and morphometric investigation of the effects of systemically administered humic acid on alveolar bone loss in ligature-induced periodontitis in rats. Journal of Periodontal Research, 51(4), 499–507.

Cho, Y. E., Lomeda, R. A. R., Ryu, S. H., Sohn, H. Y., Shin, H. I., Beattie, J. H., & Kwun, I. (2007). Zinc deficiency negatively affects alkaline phosphatase and the concentration of Ca, Mg and P in rats. Nutrition Research and Practice, 1(2), 113–119.

Durmus, K., Bora, A., Dogan, M., Özer, H., Tuncer, E., & Altuntas, E. (2017). Can local administration of humic acid shorten recovery time of mandibular fractures? Experimental study. Entupdates, 7(2), 57–61.

Garrick, M. D., Singleton, S. T., Vargas, F., Kuo, H. C., Zhao, L., Knöpfel, M., Davidson, T., Costa, M., Paradkar, P., Roth, J., & Garrick, L. M. (2006). DMT1: Which metals does it transport? Biological Research, 39(1), 79–85.

Gromova, O. A., Torshin, I. J., & Limanova, O. A. (2014). Kal’cij i ego sinergisty v podderzhke struktury soedinitel’noj i kostnoj tkani [Calcium and its synergists in support connective and bone tissue structures]. Lechashhij Vrach, 5, 69–74 (in Russian).

Hullár, I., Vucskits, A. V., Berta, E., Andrásofszky, E., Bersényi, A., & Szabó, J. (2018). Effect of fulvic and humic acids on copper and zinc homeostasis in rats. Acta Veterinaria Hungarica, 66(1), 40–51.

Ipek, H., Avci, M., Iriadam, M., Kaplan, O., & Denek, N. (2008). Effects of humic acid on some hematological parameters, total antioxidant capacity and laying performance in Japanese quails. Archiv fur Geflugelkunde, 72, 56–60.

Islam, K. M. S., Schumacher, A., & Gropp, M. J. (2005). Humic acid substances in animal agriculture. Pakistan Journal of Nutrition, 4(3), 126–134.

Jerney, Z., Bodnar, K., Paraszt, M., Privoczki, Z. I., & Makra, L. (2017). Global rabbit meat production with a special focus on the role of China. Lucrări Științifice Management Agricultural, 19(3), 31–36.

Kamphues, J. (1991). Calcium metabolism of rabbits as an etiological factor for urolithiasis. Journal of Nutrition, 50, 191–208.

Koliada, S. G., & Stepchenko, L. M. (2014a). Dynamika zagal’noji lipolitychnoji aktyvnosti u riznyh lokacijah travnogo kanalu strausenjat za diji gumilidu [Dynamics of total lipolytic activity in different locations of the ostrich digestive canal during Humilid action]. Theoretical and Applied Veterinary Medicine, 2(1), 54–60 (in Ukrainian).

Koliada, S. G., & Stepchenko, L. M. (2014b). Dynamika zagal’noji proteolitychnoji aktyvnosti u riznyh lokacijah travnogo kanalu strausenjat za diji gumilidu [Dynamics of total proteolytic activity in different locations of the ostrich digestive channel during the action of Humilid]. Bіologіja Tvarin, 16(3), 53–59 (in Ukrainian).

Marounek, M., Dušková, D., & Skřivanová, V. (2003). Hydrolysis of phytic acid and its availability in rabbits. British Journal of Nutrition, 89(3), 287–294.

Mateos, G. G., Rebollar, P. G., & de Blas, C. (2010). Minerals, vitamins and additives. In: de Blas, C., & Wiseman, J. (Eds.). Nutrition of the rabbit. CABI Publishing, Oxon. Pp. 119–151.

Mattioli, S., Dal Bosco, A., Duarte, J. M. M., D’Amato, R., Castellini, C., Beone, G. M., Fontanella, M. C., Beghelli, D., Regni, L., Businelli, D., Trabalza-Marinucci, M., & Proietti, P. (2019). Use of selenium-enriched olive leaves in the feed of growing rabbits: Effect on oxidative status, mineral profile and selenium speciation of Longissimus dorsi meat. Journal of Trace Elements in Medicine and Biology, 51, 98–105.

Miśta, D., Rząsa, A., Wincewicz, E., Zawadzki, W., Dobrzański, Z., Szmańko, T., & Gelles, A. (2012). The effect of humic-fatty acid preparation on selected haematological and biochemical serum parameters of growing rabbits. Polish Journal of Veterinary Sciences, 15(2), 395–397.

Myhaylenko, E. O., Dyomshyna, O. O., Ushakova, G. O., Griban, V. G., & Stepchenko, L. M. (2016). Vplyv kormovoji dobavky "Gumilid" na pokaznyky protejinovogo i aminokyslotnogo obminiv u kurchat-brojleriv krosu "Kobb 500" [Influence of feed additive “Humilid” on protein and amino acid metabolism indicators in broiler chickens of cobb 500 cross]. The Animal Biology, 18(4), 66–71 (in Ukrainian).

Pu, F., Chen, N., & Xue, S. (2016). Calcium intake, calcium homeostasis and health. Food Science and Human Wellness, 5(1), 8–16.

Rybalka, M. A., Stepchenko, L. M., & Shuleshko, O. O. (2016). Vplyv Gumilidu na pokaznyky bilkovogo obminu ta stan erytrocytopoezu kiz gor’kivs’koji porody [Impact on indicators of Humilid on protein metabolism and the state of the erythropoiesis of Gorky breed goats]. Theoretical and Applied Veterinary Medicine, 4(2), 45–48 (in Ukrainian).

Shawki, A., & Mackenzie, B. (2010). Interaction of calcium with the human divalent metal-ion transporter-1. Biochemical and Biophysical Research Communications, 393(3), 471–475.

Skorik, M. V. (2008). Vzajemozv’jazok funkcional’nogo stanu erytrocytiv i vmistu mikroelementiv u pechinci kurej-nesuchok za vplyvu guminovyh kormovyh dobavok riznogo pohodzhennja [The іnterrelatіon between the functіonal condіtіon of erythrocytes and the trace element contents іn the lіver of layіng hens іn response to humіnous feed addіtіves of dіfferent orіgіns]. Scientific Bulletin of Lviv National University of Veterinary Medicine and Biotechnology S. Z. Gzhytsky, 10, 190–197 (in Ukrainian).

Stepchenko, L. M., & Skorik, M. V. (2012). Vpliv gіdrogumatu na vmіst mіneral’nyh elementіv u tkanynah і organah kurchat-brojlerіv [Influence of hydrohumat on the content of mineral elements in the tissues and organs of broiler chickens]. Theoretical and Applied Veterinary Medicine, 13(3), 93–96 (in Ukrainian).

Stepchenko, L. M., Kryvaya, O. A., & Chumak, V. O. (2019). Determination of the level of safety of Humilid during biotesting at ciliates. Theoretical and Applied Veterinary Medicine, 7(4), 210‒214.

Stepchenko, L. M., Loseva, Y. O., & Skorik, M. V. (2008). Funkcional’nyj stan organizmu produktyvnoji ptyci za diji gidrogumatu [Functional state of organism of productive poultry exposed to actions of hydrohumat]. News of Dnipropetrovk State Agrarian University, 2, 99–103 (in Ukrainian).

Stepchenko, L. M., Zhorina, L. V., & Kravtsova, L. V. (1991). The effect of sodium humate on metabolism and resistance in highly productive poultry. Biologicheskie Nauki, 10, 90–95 (in Russian).

Szabó, J., Vucskits, A. V., Berta, E., Andrásofszky, E., Bersényi, A., & Hullár, I. (2017). Effect of fulvic and humic acids on iron and manganese homeostasis in rats. Acta Veterinaria Hungarica, 65, 66–80.

Trckova, M., Lorencova, A., Babak, V., Neca, J., & Ciganek, M. (2018). The effect of leonardite and lignite on the health of weaned piglets. Research in Veterinary Science, 119, 134–142.

Varga, M. (2014). Text book of rabbit medicine (2nd ed.). Butterworth-Heinemann, Edinburgh. Pp. 123–131.

Vella, D., & Donnelly, T. M. (2012). Basic anatomy, physiology. In: Carpenter, J. W., & Quesenberry, K. E. (Eds.). Ferrets, rabbits, and rodents (2rd ed.). Saunders, Philadelphia. Pp. 157–173.

Warren, H. B., Lausen, N. C. C., Segre, G. V., El-Hajj, G., & Brown, E. M. (1989). Regulation of calciotropic hormones in vivo in the New Zealand white rabbit. Endocrinology, 125(5), 2683–2690.

Yefimov, V. G., & Rakytianskyi, V. M. (2012). Vplyv guminovyh rechovyn na mineral’nyj obmin u koriv [Effect of humic substances on mineral metabolism in cows]. Theoretical and Applied Veterinary Medicine, 1(1), 66–70 (in Ukrainian).

Yefimov, V. G., Syedykh, N. J., & Griban, V. G. (2007). Іntensivnіst’ laktopoezu ta sklad moloka korіv za vplyvu gіdrogumatu ta solej mіdі, kobaltu і jodu [Intensity of lactopoiesis and composition of milk of cows under the influence of hydrorubber and salts of copper cobalt and iodine]. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu, 8, 35–37 (in Ukrainian).

Zralý, Z., & Písaříková, B. (2010). Effect of sodium humate on the content of trace elements in organs of weaned piglets. Acta Veterinaria Brno, 79(1), 73–79.

How to Cite
Rybalka, M. A., Stepchenko, L. M., Shuleshko, O. O., & Zhorina, L. V. (2020). The impact of humic acid additives on mineral metabolism of rabbits in the postnatal period of ontogenesis . Regulatory Mechanisms in Biosystems, 11(2), 289-293.