Analysis of the treatment regimen efficacy for columnaris disease in Pterophyllum scalare

Keywords: Flavobacterium columnare; enrofloxacin; tylosin; metronidazole; MelaFix; enroxil; total bacterial counts.


The article presents the results of studies on the treatment scheme efficacy for columnaris in Pterophyllum scalare, common under private aquarium husbandry conditions. To establish the diagnosis, the clinical features of the diseased fish, pathological and anatomical changes and the results of microscopic and microbiological studies were taken into account. Separate chemical and microbiological parameters of aquarium water were also studied. It was established that fish disease developed against the background of adverse changes in the chemical composition and microbiocenosis of aquarium water. High alkalinity and excess of phosphates compared to the norm provoked accumulation of opportunistic microbiota, resulting in a balance disorder in the parasite-host system and development of clinical manifestation of the fish disease. During the disease outbreak, bacteriological indices of water indicated a high level of organic contamination and a low intensity of water self-purification processes. Clinically, the disease was manifested in P. scalare by decrease in appetite and motor activity, onset of ulcerative lesions of various shapes and sizes on the surface of the body and on the gill covers. Selected pure cultures of Flavobacterium columnare showed sensitivity to enrofloxacin (growth retardation zone 31.3 ± 1.0 mm); moderate resistance was found to tylosin. The microorganisms were resistant to amoxicillin, doxycycline, benzylpenicillin and tetracycline. Microscopic studies of intestinal specimens of dead P. scalare revealed numerous motile flagellates. It has been shown that an effective treatment regimen that provides recovery for 70% of diseased P. scalare is the use of enroxil 10% solution for five days, metronidazole three times a day, and “API MelaFix” for seven days. It is proved that the following measures are effective to restore the disrupted hydro-balance: periodic water replacement in the amount of 20% of the total volume, providing the aquarium with active aeration systems, planting slow-growing plants and reducing the amount of fish food provided. The measures developed were efficient, they led to elimination of the outbreak of columnaris in the P. scalare and to restoration of biological equilibrium in a closed aquatic ecosystem.


Ashrafi, R., Bruneaux, M., Sundberg, L. R., Pulkkinen, K., Valkonen, J., & Ketola, T. (2018). Broad thermal tolerance is negatively correlated with virulence in an opportunistic bacterial pathogen. Evolutionary Applications, 11(9), 1700–1714.

Baldissera, M. D., Souza, C. F., Dias, J. B., Da Silva, T. O., Tavares, G. C., Valladão, G. M. R., da Silva, A. S., Verdi, C. M., Santos, R. C. V., Vencato, M., da Veiga, M. L., da Rocha, M., Cunha, M. A., & Baldisserotto, B. (2020). Branchial bioenergetics dysfunction as a relevant pathophysiological mechanism in freshwater silver catfish (Rhamdia quelen) experimentally infected with Flavobacterium columnare. Microbial Pathogenesis, 138, 103817.

Bernardet, J. F., & Bowman, J. P. (2006). The genus Flavobacterium. In: Dworkin, M. (Ed.). The Prokaryotes: A handbook on the biology of bacteria. New York, Springer. Pp. 481–531.

Cai, W., De La Fuente, L., & Arias, C. R. (2019). Transcriptome analysis of the fish pathogen Flavobacterium columnare in biofilm suggests calcium role in pathogenesis. BMC Microbiology, 19, 151.

Chen, T., Zhou, J., Qu, Z., Zou, Q., Liu, X., Su, J., Fu, X., & Yuan, G. (2020). Administration of dietary recombinant hepcidin on grass carp (Ctenopharyngodon idella) against Flavobacterium columnare infection under cage aquaculture conditions. Fish and Shellfish Immunology, 99, 27–34.

Chowdhury, M. B. R., & Wakabayashi, H. (1990). Survival of four major bacterial fish pathogens in different types of experimental water. Bangladesh Journal of Microbiology, 7, 47–54.

Davis, H. S. (1922). A new bacterial disease in freshwater fishes. United States Bureau of Fisheries Bulletin, 38, 37–63.

Declercq, A. M., Cai, W., Naranjo, E., Thongda, W., Eeckhaut, V., Bauwens, E., Arias, C., De La Fuente, L., Beck, B. H., Lange, M. D., Peatman, E., Haesebrouck, F., Aerts, J., & Decostere, A. (2019). Evidence that the stress hormone cortisol regulates biofilm formation differently among Flavobacterium columnare isolates. Veterinary Research, 50, 24.

Declercq, A. M., Haesebrouck, F., Van den Broeck, W., Bossier, P., & Decostere, A. (2013). Columnaris disease in fish: A review with emphasis on bacterium-host interactions. Veterinary Research, 44, 27.

Faisal, M., Diamanka, A., Loch, T. P., LaFrentz, B. R., Winters, A. D., García, J. C., & Toguebaye, B. S. (2017). Isolation and characterization of Flavobacterium columnare strains infecting fishes inhabiting the Laurentian Great Lakes basin. Journal of Fish Diseases, 40(5), 637–648.

Gallani, S. U., Sebastião, F. A., Valladão, G. M. R., Boaratti, A. Z., & Pilarski, F. (2016). Pathogenesis of mixed infection by Spironucleus sp. and Citrobacter freundii in freshwater angelfish Pterophyllum scalare. Microbial Pathogenesis, 100, 119–123.

Guo, Q., Zheng, H., Liu, X., Chi, S., Xu, Z., & Wang, Q. (2019). Nutrient sensing signaling functions as the sensor and regulator of immunometabolic changes in grass carp during Flavobacterium columnare infection. Fish and Shellfish Immunology, 93, 278–287.

Harikrishnan, R., Naafar, A., Musthafa, M. S., Ahamed, A., Arif, I. A., & Balasundaram, C. (2018). Effect of Agaricus bisporus enriched diet on growth, hematology, and immune protection in Clarias gariepinus against Flavobacterium columnare. Fish and Shellfish Immunology, 73, 245–251.

Jørgensen, A., & Sterud, E. (2007). Phylogeny of spironucleus (Eopharyngia: Diplomonadida: Hexamitinae). Protist, 158(2), 247–254.

Kitiyodom, S., Yata, T., Yostawornkul, J., Kaewmalun, S., Nittayasut, N., Suktham, K., Surassmo, S., Namdee, K., Rodkhum, C., & Pirarat, N. (2019). Enhanced efficacy of immersion vaccination in tilapia against columnaris disease by chitosan-coated "pathogen-like" mucoadhesive nanovaccines. Fish and Shellfish Immunology, 95, 213–219.

Kumru, S., Tekedar, H. C., Blom, J., Lawrence, M. L., & Karsi, A. (2020). Genomic diversity in flavobacterial pathogens of aquatic origin. Microbial Pathogenesis, 10, 104053.

LaFrentz, B. R., García, J. C., Waldbieser, G. C., Evenhuis, J. P., Loch, T. P., Liles, M. R., Wong, F. S., & Chang, S. F. (2018). Identification of four distinct phylogenetic groups in Flavobacterium columnare with fish host associations. Frontiers in Microbiology, 9, 452.

Lange, M. D., Abernathy, J., & Farmer, B. D. (2019). Evaluation of a recombinant Flavobacterium columnare DnaK protein vaccine as a means of protection against columnaris disease in channel catfish (Ictalurus punctatus). Frontiers in Immunology, 10, 1175.

Lange, M. D., Farmer, B. D., & Abernathy, J. (2018). Catfish mucus alters the Flavobacterium columnare transcriptome. FEMS Microbiology Letters, 365(22), fny244.

Lange, M. D., Farmer, B. D., & Abernathy, J. (2020). Vertebrate mucus stimulates biofilm development and upregulates iron acquisition genes in Flavobacterium columnare. Journal of Fish Diseases, 43(1), 101–110.

Lavrinenko, I. V., Peredera, O. O., & Zhernosik, I. A. (2015). Osoblyvosti klinichnoho perebihu kolumnariozu skaliarii [Characteristics of clinical course of columnaris disease in angelfish]. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj, 17(2), 112–118 (in Ukrainian).

Lavrіnenko, І. V., Peredera, O. O., & Zhernosik, I. A. (2015). Zahody borot’by z kolumnarіozom skaljarіj [Measures and prophylaxis against columnaris disease in angelfish]. Bulletin of Sumy National Agrarian University, 37, 153–155 (in Ukrainian).

Li, N., Zhu, Y., LaFrentz, B. R., Evenhuis, J. P., Hunnicutt, D. W., Conrad, R. A., Barbier, P., Gullstrand, C. W., Roets, J. E., Powers, J. L., Kulkarni, S. S., Erbes, D. H., García, J. C., Nie, P., & McBride, M. J. (2017). The type IX secretion system is required for virulence of the fish pathogen Flavobacterium columnare. Applied Environmental Microbiology, 83(23), e01769-17.

Louhi, K. R., Sundberg, L. R., Jokela, J., & Karvonen, A. I. (2015). Interactions among bacterial strains and fluke genotypes shape virulence of co-infection. Proceedings of the Royal Society B: Biological Sciences, 282, 20152097.

Meepagala, K. M., & Schrader, K. K. (2018). Antibacterial activity of constituents from mangosteen Garcinia mangostana fruit pericarp against several channel catfish pathogens. Journal of Aquatic Animal Health, 30(3), 179–184.

Mohammed, H. H., & Arias, C. R. (2015). Potassium permanganate elicits a shift of the external fish microbiome and increases host susceptibility to columnaris disease. Veterinary Research, 46, 82.

Pulkkinen, K., Pekkala, N., Ashrafi, R., Hämäläinen, D. M., Nkembeng, A. N., Lipponen, A., Hiltunen, T., Valkonen, J. K., & Taskinen, J. (2018). Effect of resource availability on evolution of virulence and competition in an environmentally transmitted pathogen. FEMS Microbiology Ecology, 94(5), fiy060.

Ravantti, J. J., Laanto, E., Papponen, P., & Sundberg, L. R. (2019). Complete genome sequence of fish pathogen Flavobacterium columnare strain B185, originating from Finland. Microbiology Resource Announce, 8(49), e01285-19.

Roon, S. R., Alexander, J. D., Jacobson, K. C., & Bartholomew, J. L. (2015). Effect of Nanophyetus salmincola and bacterial co-infection on mortality of juvenile chinook salmon. Journal of Aquatic Animal Health, 27(4), 209–216.

Schrader, K. K., Cantrell, C. L., Midiwo, J. O., & Muhammad, I. (2016). Compounds from Terminalli brownii extracts with toxicity against the fish pathogenic bacterium Flavobacterium columnare. Natural Product Communications, 11(11), 1679–1682.

Schrader, K. K., Hamann, M. T., McChesney, J. D., Rodenburg, D. L., & Ibrahim, M. A. (2015). Antibacterial activities of metabolites from Platanus occidentalis (american sycamore) against fish pathogenic bacteria. Aquaculture Research and Development, 6(10), 1000364.

Su, L., Xu, C., Cai, L., Qiu, N., Hou, M., & Wang, J. (2019). Susceptibility and immune responses after challenge with Flavobacterium columnare and Pseudomonas fluorescens in conventional and specific pathogen-free rare minnow (Gobiocypris rarus). Fish and Shellfish Immunology, 98, 875–886.

Sundberg, L. R., & Karvonen, A. (2018). Minor environmental concentrations of antibiotics can modify bacterial virulence in co-infection with a non-targeted parasite. Biology Letters, 14, 20180663.

Sundberg, L. R., Ketola, T., Laanto, E., Kinnula, H., Bamford, J. K., Penttinen, R., & Mappes, J. (2016). Intensive aquaculture selects for increased virulence and interference competition in bacteria. Proceedings of the Royal Society B: Biological Sciences, 283, 20153069.

Tan, S., Wang, W., Tian, C., Niu, D., Zhou, T., Yang, Y., Gao, D., & Liu, Z. (2019). Post-transcriptional regulation through alternative splicing after infection with Flavobacterium columnare in channel catfish (Ictalurus punctatus). Fish and Shellfish Immunology, 91, 188–193.

Tien, N. T., Dung, T. T., Tuan, N. A., & Crumlish, M. (2012). First identification of Flavobacterium columnare infection in farmed freshwater striped catfish Pangasianodon hypophthalmus. Diseases of Aquatic Organisms, 100(1), 83–88.

Tongsri, P., Meng, K., Liu, X., Wu, Z., Yin, G., Wang, Q., Liu, M., & Xu, Z. (2020). The predominant role of mucosal immunoglobulin IgT in the gills of rainbow trout (Oncorhynchus mykiss) after infection with Flavobacterium columnare. Fish and Shellfish Immunology, 99, 654–662.

Varga, Z., Sellyei, B., Paulus, P., Papp, M., Molnár, K., & Székely, C. (2016). Isolation and characterisation of flavobacteria from wild and cultured freshwater fish species in Hungary. Acta Veterinaria Hungarica, 64(1), 13–25.

Wang, Q., Shen, J., Yan, Z., Xiang, X., Mu, R., Zhu, P., Yao, Y., Zhu, F., Chen, K., Chi, S., Zhang, L., Yu, Y., Ai, T., Xu, Z., & Wang, Q. (2020). Dietary Glycyrrhiza uralensis extracts supplementation elevated growth performance, immune responses and disease resistance against Flavobacterium columnare in yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 97, 153–164.

Xu, J., Feng, L., Jiang, W. D., Wu, P., Liu, Y., Jiang, J., Kuang, S. Y., Tang, L., Tang, W. N., Zhang, Y. A., & Zhou, X. Q. (2016). Effects of dietary protein levels on the disease resistance, immune function and physical barrier function in the gill of grass carp (Ctenopharyngodon idella) after challenged with Flavobacterium columnare. Fish and Shellfish Immunology, 57, 1–16.

Zhao, H., Li, C., Beck, B. H., Zhang, R., Thongda, W., Davis, D. A., & Peatman, E. (2015). Impact of feed additives on surface mucosal health and columnaris susceptibility in channel catfish fingerlings, Ictalurus punctatus. Fish and Shellfish Immunology, 46(2), 624–637.

Zhao, L., Tu, J., Zhang, Y., Wang, J., Yang, L., Wang, W., Wu, Z., Meng, Q., & Lin, L. (2016). Transcriptomic analysis of the head kidney of topmouth culter (Culter alburnus) infected with Flavobacterium columnare with an emphasis on phagosome pathway. Fish and Shellfish Immunology, 57, 413–418.

How to Cite
Lavrinenko, I. V., Shulga, L. V., Peredera, O. O., & Zhernosik, I. A. (2020). Analysis of the treatment regimen efficacy for columnaris disease in Pterophyllum scalare . Regulatory Mechanisms in Biosystems, 11(2), 226-231.