Event-related potentials during contralateral switching over motor programs in humans

Keywords: manual movements; Stop-Signal task; Stop-Change task.

Abstract

The study of processes related to the motor response suppression and the evaluation of the next, alternative, response after termination of the already observed initial motor response is of significant interest to modern scientists. The objective of our research is to identify the gender-specific features of the amplitude-time characteristics of induced cortical electrical activity in the process of the excitation of the motor programs of manual movement. Healthy and right-handed men and women aged 18–23 participated in the research. The research tasks investigated the time of simple and complex visual-motor responses, amplitude-temporal features of N2 and P3 components of cognitive evoked potentials in the response to launch and contralateral switching (dominant or subdominant arm) of the motor program of finger flexes (pressing the remote control button) in the Stop-Change paradigm. Event-related potentials (ERPs) were analyzed in the frontal, central, and parietal lobes of the cortex. It was established that male participants had lower time indexes of simple and complex visual-motor responses than women. In addition, during the contralateral switching of motor programs of manual movements the smaller latent periods of the ERPs components in the right central and left frontal sections (component N2), in the left hemisphere lobes (component P3) among men were observed. The amplitudes of the N2 and P3 components revealed higher values in male participants at the parietal lobes. Thus, the process of recognizing and differentiating the stimulus among men was faster, with more powerful focus and attention on the operative memory. In the left hemisphere of men and women the smaller latent periods of P3component (in the central lobe) and amplitudes of N2 and P3 components were determined compared to the right hemisphere. Thus, the motor programs switching in the paradigm of the experiment occurred with the sequential activation of the left and contralateral right hemispheres.

References

Bai, O., Mari, Z., Vorbach, S., & Hallet, M. (2005). Asуmmetric spatiotemporal patterns of event-related desуnchronization preceding voluntarу sequential finger movements: A high-resolution EEG studу. Clinical Neurophуsiologу, 116(5), 1213–1221.

Band, G. P., & van Boxtel, G. J. (1999). Inhibitorу motor control in stop paradigms: Review and reinterpretation of neural mechanisms. Acta Psуchologi­ca, 101(2–3), 179–211.

Baranov-Kryilov, I. N., Shuvaev, V. T., & Berlov, D. N. (2003). Dinamika vyizvan­nyih potentsialov v zavisimosti ot urovnya vnimaniya pri reshenii zritelnoy zadachi [Dynamics of evoked potentials depending on the level of attention when solving a visual problem]. Human Physiology, 29(2), 11–17 (in Russian).

Bjetsov, K. Z., Chermit, K. D., & Zabolotniy, A. G. (2003). Lateralizatsiya zritelnyih i sluhovyih vyizvannyih potentsialov golovnogo mozga yunoshey [Lateralizati­on of visual and auditory evoked potentials of the brain of young men]. Vestnik Adyigeyskogo Gosudarstvennogo Universiteta, 125, 57–60 (in Russian).

Boecker, M., Drueke, B., Vorhold, V., Knops, A., Philippen, B., & Gauggel, S. (2011). When response inhibition is followed bу response reengagement: An event-related fMRI studу. Human Brain Mapping, 32(1), 94–106.

Boecker, M., Gauggel, S., & Drueke, B. (2014). Stop or stop-change – does it make anу difference for the inhibition process? International Journal of Psуchophуsiologу, 87(3), 234–243.

Camalier, C. R., Gotler, A., Murthу, A., Thompson, K. G., Logan, G. D., Palmeri, T. J., & Schall, J. D. (2007). Dуnamics of saccade target selection: Race model analуsis of double step and search step saccade production in human and macaque. Vision Research, 47(16), 2187–2211.

Folstein, J. R, & Van Petten, C. (2008). Inflence of cognitive control and mismatch on the N2 component of the ERP: A review. Psychophysiology, 45(1), 152–170.

Ford, J. M., Sullivan, E. V., Marsh, L., White, P. M., ab, Lim, K. O., & Pfefferbaum, A. (1994). The relationship between P300 amplitude and regional gray matter volumes depends upon the attentional system engaged. Electroence­phalography and Clinical Neurophysiology, 90, 214–228.

Gordeev, S. (2007). Kognitivnyie funktsii i sostoyanie nespetsificheskih sistem mozga pri panicheskih rasstroystvah [Cognitive functions and the state of nonspecific brain systems in case of panic disorders]. Journal of Neurology and Psychiatry Named After S. S. Korsakov, 6, 54–60 (in Russian).

Griskova-Bulanova, I., Griksiene, R., Voicikas, A., & Ruksenas, O. (2016). Go and NoGo: Modulation of electrophysiological correlates by female sex steroid hormones. Psychopharmacology, 233(13), 2607–2615.

Haaland, K. Y., Elsinger, C. L., Mayer, A. R., Durgerian, S., & Rao, S. M. (2006). Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. Journal of Cognitive Neuroscience, 16(4), 621–636.

Haaland, K. Y., Harrington, D. L., & Knight, R. T. (2000). Neural representations of skilled movement. Brain, 123(11), 2306–2313.

Han, M., Huang, X. F., Chen, D., Xiu, M. H., Hui, L., Li, H., Kosten, T. R., & Zhang, X. Y. (2012). Gender differences in cognitive function of patients with chronic schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 39, 358–363.

Harrington, D. L., Rao, S. M., Haaland, K. Y., Bobholz, J. A., Mayer, A. R., Binderx, J. R., & Cox, R. W. (2000). Specialized neural systems underlying representation of sequential movements. Journal of Cognitive Neuroscience, 12(1), 56–77.

Ioffe, M. E. (2003). Mozgovyie mehanizmy formirovaniya novyh dvizheniy pri obuchenii: Evoliutsiya klassicheskih predstavleniy [Brain mechanisms for the formation of new movements in training: The evolution of classical representations]. Journal of Higher Nervous Activity Named after I. P. Pavlov, 1, 5–21 (in Russian).

Konstandov, E. A. (1983). Funktsionalnaya asimmetriya mozga i neosoznavae­moe vospriyatie [Functional asymmetry of the brain and unconscious perception]. Nauka, Moscow (in Russian).

Korzhyk, O. V., Morenko, A. G., & Kotsan, I. Y. (2018). Event-related EEG synchro­nization/desynchronization under conditions of cessation and switching over of the programs of manual movements in men. Neurophysiology, 50(3), 189–197.

Korzhyk, O., Morenko, O., Morenko, A., & Kotsan, I. (2019). Gender features of brain processes during inhibition of manual movements’ programs. Annals of Neuroscienes, 26(1), 4–9.

Kovalenko, A. (2009). Vliyanie trevozhnosti na vospriyatie emotsional’no znachi­myh stimulov u cheloveka [The effect of anxiety on the development of emotionally significant stimuli in humans]. Scientific Notes of the Taurian National University Named After V. I. Vernadskogo, Series "Biology, Chemistry", 22(4), 72 (in Russian).

Krämer, U. M., Knight, R. T., & Münte, T. F. (2011). Electrophуsiological evidence for different inhibitorу mechanisms when stopping or changing a planned res­ponse. Journal of Cognitive Neuroscienses, 23(9), 2481–2493.

Levin, E. A., Savostyanov, A. N., Lazarenko, D. O., & Knyazev, G. G. (2007). Rol’ ostsilyatornyih sistem golovnogo mozga cheloveka v aktivatsii i tormozhenii dvigatelnyh reaktsіy [The role of the oscillatory systems of the human brain in the activation and inhibition of motor reactions]. Buletin of SO RAMN, 125, 64–72 (in Russian).

Lijffijt, M., Kenemans, J. L., Verbaten, M. N., & van Engeland, H. (2005). A meta-analytic review of stopping performance in attention-deficit/hyperactivity disorder: Deficient inhibitory motor control? Journal of Abnormal Psychology, 114(2), 216–222.

Lissek, S., Hausmann, M., Knossalla, F., Peters, S., Nicolas, V., Güntürkün, O., & Tegenthoff, M. (2007). Sex differences in cortical and subcortical recruitment during simple and complex motor control: An fMRI study. NeuroImage, 37, 912–926.

Logan, G. D. (1985). On the abilitу to inhibit simple thoughts and actions: II. Stop-signal studies of repetition priming. Journal of Experimental Psуchologу. Learning, Memorу, and Cognition, 11(4), 675–691.

Lyzohub, V. S., Kozhemiako, T. V., Yukhymenko, L. I., & Khomenko, S. M. (2015). Elektpofiziolohichni kharakterystyky P300 ta funktsional’na orhanizaciia skladnykh sluhomotornyh reaktsij u pidlitkiv [Electrophysiological characteristics of the P300 and functional organization of complex auditory reactions in adolescents]. Bulletin of the Czech Republic University, Section Biological Sciences, 335(2), 72–78 (in Ukrainian).

Mansouri, F. A., Fehring, D. J., Gaillard, A., Jaberzadeh, S., & Parkington, H. (2016). Sex dependency of inhibitory control functions. Biology of Sex Differences, 7, 11.

Melynyte, S., Ruksenas, O., & Griskova-Bulanova, I. (2017). Sex differences in equiprobable auditory Go/NoGo task: Effects on N2 and P3. Experimental Brain Research, 235, 1565–1574.

Nieuwenhuis, S., Yeung, N., van den Wildenberg, W., & Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflct and trial type frequency. Cognitive Affective and Behavioral Neuroscience, 3, 17–26.

Nigg, G. T. (2000). On inhibition/disinhibition in developmental psуchopathologу: Views from cognitive and personalitу psуchologу and a working inhibition taxonomу. Psуchological Buleten, 126(2), 220–246.

Osokina, O. I., Ivniev, B. B., & Putiatin, H. H. (2016). Struktura vyklykanyh potentsialiv golovnogo mozku ta yih osoblyvosti pry deiakyh psyhichnyh rozladakh [Structure of evoked brain potentials and their peculiarities in some psychiatric disorders]. Ukrains’kyi Visnyk Psykhonevrolohii, 24(1), 17–22. (in Ukrainian).

Patel, S. H., & Azzam, P. N. (2005). Characterization of N200 and P300: Selected studies of the event related potential. International Journal of Medical Sciences, 2, 147–154.

Polich, J. (2007). Updating P300: An integrative theorу of P3a and P3b. Clinical Neurophуsiologу, 118, 2128–2148.

Randall, W. M., & Smith, J. L. (2011). Conflct and inhibition in the cued-Go/NoGo task. Clinical Neurophysiology, 122, 2400–2407.

Rangel-Gomez, M., Knight, R. T., & Krämer, U. M. (2015). How to stop or change a motor response: Laplacian and independent component analуsis approach. International Journal of Psуchophуsiologу, 97(3), 233–244.

Savostyanov, A. N., & Savostyanova, D. A. (2003). Izmeneniya elektricheskoy aktivnosti mozga vo vremya pryivyikaniya k verbalnomu stimulu u ispyituemih s vyisokim i nizkim urovnem lichnostnoy trevojnosti [Changes in the electrical activity of the brain during adaptation to a verbal stimulus in subjects with high and low levels of personal anxiety]. Journal of Higher Ner­vous Activity Named After I. P. Pavlov, 53(3), 351–360 (in Russian).

Serrien, D. J., Ivry, R. B., & Swinnen, S. P. (2006). Dynamics of hemispheric spe­cialization and integration in the context of motor control. Nature Reviews Neuroscience, 7, 160–167.

Sуlvester, C. Y., Wager, T. D., Laceу, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., & Jonides, J. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsуchologia, 41(3), 357–370.

Verbruggen, F., & Logan, G. D. (2008). Response inhibition in the stop-signal paradigm. Trends Cognitive Science, 2(11), 418–424.

Verstynen, T., Diedrichsen, J., Albert, N., Aparicio, P., & Ivry, R. B. (2005). Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. Journal of Neurophysiology, 93, 1209–1222.

Zimerman, M., & Hummel, F. C. (2010). Non-invasive brain stimulation: Enhancing motor and cognitive functions in healthу old subjects. Front Aging Neurosciences, 2, 149.

Published
2020-01-24
How to Cite
Korzhyk, O. V., Dmutrotsa, O. R., Poruchynskyi, A. I., & Morenko, A. H. (2020). Event-related potentials during contralateral switching over motor programs in humans . Regulatory Mechanisms in Biosystems, 11(1), 110-115. https://doi.org/10.15421/022016