Sensitivity of antifungal preparations of Сandida isolates from sub-biotopes of the human oral cavity

Keywords: candidiasis; itraconazole; fluconazole; amphotericin B.

Abstract

Candidiasis is the commonest opportunistic infection of the oral cavity. As a result of immune-deficiency of the organism, yeasts of Candida genus by acting as commensal organisms transmute into pathogenic organisms. The article presents frequency of isolation, topographic peculiarities, species range, sensitivity of the Candida yeasts to antimycotics and newly-synthesized derivatives of amino alcohols isolated from the sub-biotopes of the oral cavity of patients with oncopathologies. The survey of the material included microscopic, mycologic, statistical-analytical methods. For all the clinical isolates the sensitivity to antifungal preparations was determined. Over the study 492 sub-biotopes of the oral cavity were examined. The extraction of the material was made from the mucous membrane of the cheek, angle of the mouth, mucous membrane of the surface of the tongue and the palate. According to the results of the conducted studies, the level of candidal carriage on the mucous membrane of the oral cavity in the patients with oncopathologies without clinical signs of candidiasis equaled 25.0%, active candidiasis infection was found in 47.0% of cases. Among the clinical strains, we isolated: C. albicans, C. glabrata, C. tropicalis and C. krusei. Among all the isolated strains, in all 4 sub-biotopes C. albicans dominated accounting for 73.1%. In 4 sub-biotopes we detected the association of two species of Candida. Analysis of the obtained results of the susceptibility of strains to modern antymicotics and newly-synthesized substances revealed that the representatives of non-albicans are more resistant to the antifungal preparations. Among the commercial preparations, amphotericin B exerted the highest activity against the clinical isolates of yeast-like fungi. The concentration of 0.97 µg/mL inhibited 50.0% of representatives of non-albicans, and also 75.0% of isolates of C. albicans. Fluconazole exhibited activity in the concentration of 1 µg/mL towards 17.0% of non-albicans and 25.0% of С. albicans. Itraconazole was observed to have no significant antifungal activity. Among the newly-synthesized aryl acyclic amino alcohols, compound Kc22 displayed high activity against both groups of Candida (experimental and control) making it promising for creating new therapeutic preparations. The parameters of resistance of clinical isolates to modern antimycotics indicate the necessity of constant monitoring of the sensitivity of the pathogens of candidiasis and precise species identification for rational use of antifungal preparations and prevention of the development of antimycotic resistance.

References

Arendrup, M. C., Cuenca-Estrella, M., Lass-Florl, C., & Hope, W. (2012). EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EUCAST-AFST). Clinical Microbiology and Infection, 18(7), 246–247.

Aslani, N., Janbabaei, G., Abastabar, M., Meis, J. F., Babaeian, M., Khodavaisy, S., Boekhout, T., & Badali, H. (2018). Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry. BMC Infectious Diseases, 18(1), 24.

Badiee, P., Badali, H., Boekhout, T., Diba, K., Moghadam, A. G., & Hossaini, N. A. (2017). Antifungal susceptibility testing of Candida species isolated from the immunocompromised patients admitted to ten university hospitals in Iran: Comparison of colonizing and infecting isolates. BMC Infectious Diseases, 17(1), 727.

Bagirova, N. S., & Dmitrieva, N. V. (2016). Resistance Candida spp. for amphotericin B in cancer patients. Journal Infectologii, 8(1), 26–31.

Barros, P. P., Ribeiro, F. C., Rossoni, R. D., Junqueira, J. C., & Jorge, A. O. (2016). Influence of Candida krusei and Candida glabrata on Candida albicans gene expression in in vitro biofilms. Archives of Oral Biology, 64, 92–101.

Brilis, V. I., Brilene, T. A., Lencner, H. P., & Lencner, A. A. (1986). Metodyka izuchenyia adhezivnogo processa mikroorhanizmov [Methods of studying the adhesive process of microorganisms]. Laboratornoe Delo, 4, 210–212 (in Russian).

Cho, T., Nagao, J., Imayoshi, R., & Tanaka, Y. (2014). Importance of diversity in the oral microbiota including Candida species revealed by high-throughput technologies. International Journal of Dentistry, 2014, 454391.

Costalonga, M., & Herzberg, M. C. (2014). The oral microbiome and the immunobiology of periodontal disease and caries. Immunology Letters, 162(2), 22–38.

De Sousa, L. V., Santos, V. L., de Souza, M. A., Dias-Souza, M. V., Marques, S. G., de Faria, E. S., Assunção, E. A. O., Dos Santos, S. G., Zonis, J. M., de Alvarenga, D. G., de Holanda, R. A., de Sousa, J. G., Dos Santos, K. V., & Stoianoff, M. A. R. (2016). Isolation and identification of Candida species in patients with orogastric cancer: Susceptibility to antifungal drugs, attributes of virulence in vitro and immune response phenotype. BMC Infectious Dise­ases, 16, 86.

Deorukhkar, S. C., Saini, S., & Mathew, S. (2014). Virulence factors contributing to pathogenicity of Candida tropicalis and its antifungal susceptibility profile. International Journal of Microbiology, 2014, 456878.

Eddouzi, J., Lohberger, A., Vogne, C., Manai, M., & Sanglard, D. (2013). Identification and antifungal susceptibility of a large collection of yeast strains isolated in Tunisian hospitals. Medical Mycology, 51(7), 737–746.

Guo, F., Yang, Y., Kang, Y., Zang, B., Cui, W., Qin, B. (2013). Invasive candidiasis in intensive care units in China: A multicentre prospective observational study. Journal of Antimicrobial Chemotherapy, 68(7), 1660–1668.

Jain, M., Shah, R., Chandolia, B., Mathur, A., Chauhan, Y., Chawda, J., Mosby, S., & Bhagalia, S. (2016). The oral carriage of Candida in oral cancer patients of Indian origin undergoing radiotherapy and/or chemotherapy. Journal of Clinical and Diagnostic Research, 10(2), 17–20.

Jayachandran, A. L., Katragadda, R., Thyagarajan, R., Vajravelu, L., Manikesi, S., Kaliappan, S., & Jayachandran, B. (2016). Oral candidiasis among cancer patients attending a tertiary Care Hospital in Chennai, South India: An evaluation of clinicomycological association and antifungal susceptibility pattern. Canadian Journal of Infectious Diseases and Medical Microbiology, 8758461.

Kathuria, S., Singh, P. K., Sharma, C., Prakash, A., Masih, A., Kumar, A., Meis, J. F., & Chowdhary, A. (2015). Multidrug-resistant Candida auris misidentified as Candida haemulonii: Characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. Journal of Clinical Microbiology, 53(6), 1823–1830.

Kohdoh, O., Inagaki, Y., Fukuda, H., Mizuguchi, E., Ohya, Y., Arisawa, M., Shim­ma, N., Aoki, Y., Sakaitani, M., & Watanabe, T. (2005). Piperazine propanol derivative as a novel antifungal targeting 1,3-β-D-glucan synthase. J-Stage Home, 28(11), 2138–2141.

Korotkii, Y. V., Vrynchanu, N. A., Dronova, M. L., Suvorova, Z. S., & Smertenko, Z. S. (2015). Synthesis, antibacterial and antifungal activity of 1-[4-(1,1,3,3-tetramethylbutyl)phenoxy]-3-dialkylamino-2-propanol quaternary salts. Farmatsevtychnyi Zhurnal, 1, 56–62.

Korotkiy, Y. V., & Smertenko, O. A., (2013). Patent na korysnu model chetvertynni soli 1-[4-(1,1,3,3-tetrametylbutyl)fenoksi-1-etoksi]-3-(nalkildialkilamino)-2-pro­panolu. Ukrainian patent for cinnamon model 86109. Fourth salts 1-[4-(1,1,3,3-tetramethylbutyl) phenoxi-1-etoxi]-3-(nalkildialkilamino)-2-propanol. Bull. No23 (in Ukrainian).

Krom, B. P., Kidwai, S., & Ten Cate, J. M. (2014). Candida and other fungal species: Forgotten players of healthy oral microbiota. Journal of Dental Research, 93, 445–451.

Lof, M., Janus, M. M., & Krom, B. P. (2017). Metabolic interactions between bacteria and fungi in commensal oral biofilms. Journal of Fungi, 3(3), 40.

Montelongo-Jauregui, D., & Lopez-Ribot, L. (2018). Candida interactions with the oral bacterial microbiota. Journal Fungi, 4(4), 122.

Nastenko, V. B., Korotkiy, Y. V., Smertenko, O. A., Osypchuk, N. O., Shyrobokov, V. P., & Chobotar, A. P. (2018). Vyvchennia protymikrobnoi aktyvnosti solei alkil (R-aryl) oksydyalkil amoniiu shchodo referentnykh shtamiv mikroorhanizmiv [Study of antimicrobial activity of alkyl (R-aryl) oxy dialkyl ammonium salts towards the reference strains of microorganisms]. Mіkrobіologіya і Bіoteh­nologіya, 1, 18–27 (in Ukrainian).

Nesvizhskiy, Y. V., Volchkova, E. V., Filina, Y. S., Bogdanova, E. A., Umbetova, K. T., & Pak, S. G. (2015). Razrabotka kompleksnoho podkhoda k terapyy ynfektsyy, vyzvannoi hrybamy roda Candida [The elaboration of the complex approach to the treatment of infections caused by fungi of the genus Candida]. Epidemiologiya i Infektsionnye Bolezni, 20(1), 27–31 (in Russian).

Rossoni, R. D., Barbosa, J. O., Vilela, S. F., dos Santos, J. D., de Barros, P. P., Prata, M. C., Anbinder, A. L., Fuchs, B. B., Jorge, A. O., Mylonakis, E., & Junqueira, J. C. (2015). Competitive interactions between C. albicans, C. glabrata and C. krusei during biofilm formation and development of experimental candidiasis. PLoS One, 10(7), e0131700.

Santos, J. D., Piva, E., Vilela, S. F., Jorge, A. O., & Junqueira, J. C. (2016). Mixed biofilms formed by C. albicans and non-albicans species: A study of microbial interactions. Brazilian Oral Research, 30(1), e23.

Sardi, J. C., Scorzoni, L., Bernardi, T., Fusco-Almeida, A. M., & Mendes Giannini, M. J. (2013). Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. Journal of Medical Microbiology, 62(1), 10–24.

Suvorova, Z. (2017). The therapeutic efficacy of 1-[4-(1,1,3,3-tetramethyl butyl) phenoxy]-3-(n-benzyl hexametylenimino)-2-propanol chloride in vivo. Sci­enceRise: Biological Science, 4, 37–39.

Taj-Aldeen, S. J., Wahab, A., Kolecka, A., Deshmukh, A., Meis, J. F., & Boekhout, T. (2014). Uncommon opportunistic yeast bloodstream infections from Qatar. Medical Mycology, 5(52), 552–556.

Tati, S., Davidow, P., McCall, A., Hwang-Wong, E., Rojas, I. G., Cormack, B., & Edgerton, M. (2016). Candida glabrata binding to Candida albicans hyphae enables its development in oropharyngeal candidiasis. PLoS Pathogens, 12(3), e1005522.

Vaezi, A., Fakhim, H., Khodavaisy, S., Alizadeh, A., Nazeri, M., Soleimani, A., Boekhout, T., & Badali, H. (2017). Epidemiological and mycological characteristics of candidemia in Iran: A systematic review and meta-analysis. Journal de Mycologie Médicale, 27, 146–152.

Vipulanandan, G., Herrera, M., Wiederhold, N. P., Li, X., Mintz, J., Wickes, B. L., & Kadosh, D. (2018). Dynamics of mixed-Candida species biofilms in response to antifungals. Journal of Dental Research, 97(1), 91–98.

Published
2020-02-03
How to Cite
OsypchukN. О., Nastenko, V. B., Shirobokov, V. P., & Korotkyi, Y. V. (2020). Sensitivity of antifungal preparations of Сandida isolates from sub-biotopes of the human oral cavity . Regulatory Mechanisms in Biosystems, 11(1), 82-87. https://doi.org/10.15421/022011